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Abstract

Background: Signal transduction is the process through which cells communicate with the external environment,
interpret stimuli and respond to them. This mechanism is controlled by signaling cascades, which play the role of
intracellular transmitter, being able to transmit biochemical information between cell membrane and nucleus. In
theory as well as in practice, it has been shown that a perturbation can propagate upstream (and not only
downstream) a cascade, by a mechanism known as retroactivity. This study aims to compare the conditions on
biochemical parameters which favor one or the other direction of signaling in such a cascade.

Results: From a mathematical point of view, we show that the steady states of a cascade of arbitrary length n are
described by an iterative map of second order, meaning that the cascade tiers are actually coupled three-by-three. We
study the influence of the biochemical parameters in the control of the direction of transmission – upstream and/or
downstream – along a signaling cascade. A numerical and statistical approach, based on the random scan of
parameters describing a 3-tier signaling cascade, provides complementary findings to the analytical study. In
particular, computing the likelihood of parameters with respect to various signaling regimes, we identify conditions on
biochemical parameters which enhance a specific direction of propagation corresponding to forward or
retro-signaling regimes. A compact graphical representation is designed to relay the gist of these conditions.

Conclusions: The values of biochemical parameters such as kinetic rates, Michaelis-Menten constants, total
concentrations of kinases and of phosphatases, determine the propensity of a cascade to favor or impede
downstream or upstream signal transmission. We found that generally there is an opposition between parameter sets
favoring forward and retro-signaling regimes. Therefore, on one hand our study supports the idea that in most cases,
retroactive effects can be neglected when a cascade which is efficient in forward signaling, is perturbed by an external
ligand inhibiting the activation at some tier of the cascade. This result is relevant for therapeutic methodologies based
on kinase inhibition. On the other hand, our study highlights a less-known part of the parameter space where,
although the forward signaling is inefficient, the cascade can interestingly act as a retro-signaling device.
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Background
Cell signaling is responsible for the development and func-
tioning of both unicellular and multicellular organisms.
Abnormal cell signaling leads to diseases which involve at
least one breakdown in cell communication [1].
Signaling pathways control and regulate the flow of bio-

chemical information between cells and their external
environment, which is essential for cell signaling. Typ-
ically, a stimulus (in most cases molecules secreted by
another cell, e.g. growth factors, hormones) is detected
on the surface of the plasma membrane, activating com-
plex signaling. Covalent modification cycles are one of
the major intracellular signaling mechanisms, both in
prokaryotic and eukaryotic organisms [2]. Kinase cas-
cades are a sequence of such cycles, in which the activated
protein in one tier promotes the activation of the pro-
tein in the next one. The advantages of these cascades in
signal transduction are multiple and the conservation of
their basic structure throughout evolution suggests their
usefulness. A reaction cascade may amplify a weak sig-
nal, accelerate the speed of signaling, steepen the profile
of a graded input as it propagates, filter out noise in sig-
nal reception, introduce time delay, and allow alternative
entry points for differential regulation [3–5].
Recent theoretical and experimental studies have

demonstrated that kinase cascades exhibit bidirectional
signal propagation via a phenomenon termed retroactivity
[6–11]. This phenomenon arises because cycles in a cas-
cade are coupled with both the next and the previous cycle
(Fig. 1a). The cycles can be thought of as modules, where
each module’s substrate sequesters a key component of
the previous one, limiting the component’s ability to par-
ticipate in the previous module and inducing a natural
change on it. This change may then propagate upstream
through one or more preceding modules.
In [6, 11–14] the effect of retroactivity in kinase cas-

cades has been investigated. Applying a perturbation at
any level of the cascade (such as sequestration of the active
protein or over-expression of a phosphatase) would have
implications both downstream and upstream of the dis-
turbance level due to retroactivity. This result, that was
experimentally validated ([10, 15–17]), indicates that a
kinase cascade is a bidirectional device regarding informa-
tion transmission. However, how likely is it that a cascade
transmits information upstream? If parameter conditions
favor this last situation, can this coexist with standard sig-
nal propagation down the cascade? Some of the results
in [6, 11–14] show evidences that favorable conditions
to forward signaling are typically opposite to conditions
promoting retroactive signaling.
In [6], an arbitrary long cascade (with every unit in

steady-state) has been considered to be locally perturbed
and two different regimes have been identified (see Fig. 4
therein). The first regime (perturbation traveling mostly

(a)

(b)

Fig. 1 A linear cascade propagates signals in different directions with
a certain probability

downstream) is achieved when both all kinases and all
phosphatases are saturated by their substrates, making the
amount of protein increase down the cascade. The oppo-
site regime is attained when only the phosphatases are
saturated. These two regimes involved the relaxation of a
perturbation, and was actually a first evidence that sepa-
rated regions in the parameter space of a cascade might
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characterize the propagatation of a signal downstream or
upstream.
In [11] it has been explored how a small perturba-

tion in the concentration of an inhibitor of the active
protein at the last level perturbs the steady-state concen-
trations of a relatively long linear the cascade. It has been
recognized that natural cascades can amplify a perturba-
tion (for free active protein) as it propagates upstream,
but the probability of attenuation is substantially higher
than that of amplification. In addition, the probability of
attenuation increases with the number of stages in the
cascade. Interestingly, the parameter conditions that pro-
duce an attenuation of the upstream response ensure the
amplification of downstream signaling.
In [12] the authors have focused on kinase inhibitors,

a class of targeted therapies designed to interfere with a
specific kinase molecule in a dysregulated signaling path-
way. Within physiologically and therapeutically relevant
ranges for all parameters, a targeting inhibitor can nat-
urally induce an off-target effect via retroactivity, having
the capacity of turning “on" an otherwise “off" parallel
cascade when two cascades share an upstream activa-
tor. In that study it was mainly considered a network
of three covalent modification cycles: an upstream cycle
(cycle 1) activating two parallel cycles. A perturbation
was applied to one of the downstream cycles (cycle 3)
and the effect measured in the other one (cycle 2); this
effect reaches the upper cycle via retroactivity and then
is transmitted to the parallel pathway. An optimization
procedure was performed to identify ranges of the param-
eter values that ensure a measurable effect in cycle 2.
This optimization implied the combination of a good
upstream transmission of information (from cycle 3 where
the perturbation is applied, to cycle 1) and a good down-
stream signaling (from cycle 1 to cycle 2) and noticeably,
the parameter ranges characterizing these two direc-
tions of signaling were not only different but somehow
opposite.
Similar conclusions have been experimentally observed

on a two-branch MAP-Kinase cascade, allowing to acti-
vate responses of JNK and p38MAPK (equivalent to cycles
2 and 3 in the previous description) [17]. Here the authors
termed the notion of retroactive signaling by retrograde
propagation. They experimentally showed that retrograde
propagation from JNK to p38MAPK is significantly higher
than from p38MPAK to JNK. A preexisting theoretical
study [13], enables to interpret such asymmetry by the
fact that in this branched pathway, one side is more
effective than the other for forward signaling whereas
the second is more effective for retroactive signaling. In
particular, for the simplest case of a bicyclic kinase cas-
cade, that study has analyzed the conditions for which
the upstream cycle was affected: either by a change of the
total amount of protein in the downstream cycle, or by a

variation of the phosphatase deactivating the same pro-
tein. Notably, it was revealed that when the downstream
cycle was mostly deactivated, thus impeding a forward
signaling, the retroactive effects on the upstream cycle
were larger.
In this paper, we address the question of simultaneous

bidirectionality in signaling cascades, and we use both
analytical and numerical approaches. Our main goal is to
develop a comparative study of parameters affecting for-
ward or retroactive responses in linear signaling cascades
(Fig. 1a). In the first part we develop an analytical study
of the dose-response curve, defined as the concentration
of the last activated protein in the cascade as a function
of the initial stimulus. We also consider that a drug can
be added in the cell in order to inhibit the last activated
protein in the cascade. Our aim being to examine the fea-
tures of the dose-response as a function obtained from a
discrete iterative map with boundary conditions, and thus
optimize the forward signaling. Moreover, we define the
drug-response curves, as the concentration of the inter-
mediate activated proteins as a function of the inhibiting
drug, which refer to the retroactive (backward) signaling.
In the second part, we perform a numerical investigation
on a 3-tier cascade in order to test the cascade for uni-
and bidirectional propagation (upstream and/or down-
stream) along it. The cascade parameters are sampled
and classified according to the signaling direction they
contribute to. Some striking results are already summa-
rized on Fig. 1b as follows: 67% of parameters lead to
no form of signaling; 19% of parameters show forward
signaling without retroactivity; 12% of parameters enable
retroactive response but no forward signaling; 2% of
parameters show both forward and retroactive signaling
properties.
Evidently, any estimate of such probabilities strongly

depends on the assumed distribution of biochemical
parameters from which the sampling is performed. Pre-
sumably, the actual parameter distribution existing in
natural signaling pathways is not uniform. On the other
hand, this knowledge is currently out of reach, or would
be very hard to access. Therefore in this paper we choose
as a reference point, a uniform distribution of biochem-
ical parameters lying in some predefinite ranges. How-
ever, the fact that numerous efficient signaling cascades,
and retroactivity effects, have been measured experimen-
tally, suggests that the estimates reported on Fig. 1b, are
likely to be lower bounds of the corresponding natural
probabilities. However, the probability of mixed forward
and retro-signaling is likely to remain much less proba-
ble than the non-mixed signaling regimes because, as we
shall see in the following, this kind of signaling proper-
ties reckon with parameter conditions that are somehow
antagonist. Indeed, in the following sections we ana-
lyze in more details how some particular parameters
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influence the probabilities of these signaling types. Con-
siderable attention is provided to the interpretation of
some conditions on parameters which increase the prob-
abilities of various signaling regimes, in terms of bio-
chemical concepts like enzyme saturation and protein
sequestration.

Results
A n-tier signaling cascade with an inhibitor
The system we deal with is a linear cascade made up of
an arbitrary number n of cycles of single covalent mod-
ifications, e.g. single phosphorylation-dephosphorylation
cycles. We also assume that the last level of the cas-
cade may be altered by a kinase inhibitor, represented
by a drug D, that blocks the action of the active
protein by sequestering it into an inactive complex
(Fig. 1a).
Our overall purpose is to investigate the working prin-

ciples of such a generic cascade in terms of biochemical
parameters like reaction rates and total enzyme con-
centrations. Thus, identify which parameter ranges are
associated to specific signaling behaviors, which we call
regimes. A signaling regime describes the way a cascade
responds (significantly or negligibly) to the stimuli it is
subjected to, namely the activator signal (at the top) and
the inhibiting drug (at the bottom).
Practically, this means to measure two effects simul-

taneously: the impact of the activator on downstream
proteins (dose-response curves) and the effect of the drug
on the upstream proteins (drug-response curves). Specif-
ically, we are interested in studying how the retroactive
signaling propagates (from the (n − 1)th to the first tier)
and whether this is compatible with an efficient forward
signaling relative to the nth tier.
In the following, we firstly show analytical results char-

acterizing the most “natural" direction of propagation –
the forward signaling – on a generic cascade of n tiers. We
will show that this analytical approach provides some use-
ful clues on elucidating key conditions that biochemical
parameters should satisfy to observe an effective forward
signaling of the cascade. On the other hand, the analytical
approach soon becomes cumbersome, even by consider-
ing a homogeneous cascade (where parameters are the
same for each tier). Therefore, in a second part of the
Results we present a statistical investigation based on
numerical computations, about all forms of signaling (for-
ward and/or retroactive), for inhomogeneous cascades
but with n fixed to 3.

An iterative map for the cascade response functions
The system of equations describing the steady states of the
n-cycle cascade depicted on Fig. 1a can be reformulated
as a system of n iterative equations (details are shown in
Methods) given by

s = x1
x1 + a1

+ b1x1
(x1 + a1)

(
1 − x1 − e2 x2

x2+a2

)
− c1x1

,

(1a)

xi−1 = bieixi
(xi + ai)

(
1 − xi − ei+1

xi+1
xi+1+ai+1

)
− cixi

,

1 < i < n, (1b)

xn−1 = bnenxn
(xn + an)

(
1 − xn − dT xn

xn+aD

)
− cnxn

, (1c)

with dimensionless variables, 1 ≤ i ≤ n: xi = Y 1
i /YiT ,

where Y 1
i is the active protein, and YiT is the total protein

concentration, so that xi is the normalized active pro-
tein. Then the dimensionless parameters, 1 ≤ i ≤ n, are
defined as follows:

s = k01 Y0T
k11E1T

,

ai = K1
i

YiT , bi = K0
i

YiT ,

ci = (1 + k1i
k0i

)
EiT
YiT ,

ei = k1i EiT
k0i Yi−1,T

,
dT = DT

YnT , aD = KD
YnT ,

(2)

where k0i and k1i are the catalytic rates of, respectively,
the phosphorylation and dephosphorylation reactions; K0

i
and K1

i are the Michaelis-Menten constants associated;
KD is the drug association-dissociation constant; YiT , EiT
andDT represent, respectively, the total concentrations of
the proteins, the phosphatases and the drug.
This formulation is a generalization of the one pre-

sented for a 3-tier cascade in [18], extented to a cascade of
arbitrary length n, with the addition of a drug.
In a more compact form, system (1) can be rewritten as:

s = f̌1(x1, x2),
xi−1 = fi(xi, xi+1), 1 < i < n, (3)

xn−1 = f̂n(xn, xn+1 = 0, dT ) ,

which represents the iterates of a second-order discrete
map with boundary conditions given by signal s and xn+1.
We remark that, if the drug is absent, i.e. dT = 0, then

f̂n(xn, xn+1 = 0, dT ) reduces to fn(xn, xn+1 = 0).
This iterative system allows us to obtain the dose-

response function xn(s) as follows, provided that all the
parameters (even dT ) are fixed, except s : given xn ∈[ 0, 1),
from Eq. 1c one can calculate xn−1, then from Eq. 1b
one gets xn−2, . . . , x1 , with i decreasing from n − 1 to
2. Finally, s is computed by using 1a and one obtains
function s(xn) which has typically several branches (see
Fig. 2a), along the whole interval [ 0, 1). Nevertheless,
only one branch is biologically relevant [19], namely the
one such that s(0) = 0. This branch is defined on
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(a) (b)

(c) (d)

Fig. 2 Examples of dose-response and drug-response functions computed from the iterative system (3) (see main text). Parameters for the
dose-responses: n = 3, a = 1.6, b = 0.8, c = 0.05, e = 0.7. Parameters for the drug-responses: n = 3, a = 2.2, b = 0.0005, c = 5.2, e = 5.1

the domain [ 0,α), with α being the minimum value of
xn for which s(xn) → +∞. Thus, the biological dose-
response curve is given by the restriction s(xn)

∣∣
[0,α)

which
is continuous and injective, so invertible on this domain.
We denote such an inverse function as xn(s) (omitting
the codomain restriction, for the sake of notation), see
Fig. 2b.
Moreover, one can check that system (1) is consistent

with the steady-state formulation derived in [19] (provid-
ing dT = 0), where the authors particularly studied the
properties of s(xn) as a rational function.
We also note that the maps f̌1, fi, and f̂n are analytically

invertible, leading to an inverse iterative system giving
explicitly the inverse of the drug-response function dT (x1)
(reported in Additional file 1), for a fixed signal s, cf.
Fig. 2d.

Dose-response functions: analytical characterization
The dose-response function xn(s) expresses how the acti-
vated protein in the last cycle of the cascade varies with
the input signal s (proportional to the total enzyme Y0T
activating the first cycle of the cascade), given the quantity
dT fixed e.g. to zero.

For a cascade of n ≥ 3 tiers, it is not possible to explic-
itly invert [the restriction of] function s(xn) to obtain an
analytical expression of xn(s), because this requires find-
ing the roots of a high-degree polynomial. Nonetheless,
we illustrate how to provide qualitative knowledge of the
non-saturating region, and quantitative estimation of the
saturation value of the dose-response function.
In order to simplify the analytical expressions we

assume that the parameters defined in Eq. 2 are the same
for each i = 1, 2, . . . , n. We say that such a system is a
homogeneous cascade, and in the rest of the paper we will
omit to write the lower index i, if unnecessary. Some gen-
eralizations of our results to inhomogeneous cascades are
given in Methods.
The strategy consists in approximating xn(s) piecewisely

by matching analytical quantities (depending on parame-
ters) evaluated at the origin (s = 0) with the ones deduced
at saturation (s → +∞), as illustrated in Fig. 3. Indeed the
optimization of the efficiency of the forward signaling is
based on the following approach.
The non-saturated part of the dose-response function

is roughly described by a polynomial function (of first
or second order according to the initial curvature sign –
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(a) Convex function (its curvature at the
origin is negative).

(b) Logistic function (its curvature at the
origin is positive).

Fig. 3 Sketch of typical dose-response functions. Dose-response
curves xn(s) (dotted blue curves) and their piecewise approximations
(solid black lines)

negative or positive, respectively), and the saturated part
by a constant function.
More formally, we state that if the initial curvature χ =

x′′
n(0) < 0 (Fig. 3a), then:

xn(s) ∼
{

σ s 0 ≤ s < p
α s ≥ p , with p = α

σ
, (4)

where 0 < σ < ∞ and 0 < α < 1 are defined as σ =
x′
n(0) and α = lims→∞ xn(s).
In the other case, if χ > 0 (Fig. 3b), then:

xn(s) ∼
{

σ s + 1
2χ s2 0 ≤ s < q

α s ≥ q ,

with q = −σ + √
σ 2 + 2χ α

χ
.

(5)

Hence, a dose-response function can be sketched by a
simple curve depending on the three parameters (σ ,χ ,α).
Precisely, if xn(s) is convex (χ ≤ 0), the dose-response
only depends on its initial slope σ and on its asymptotic
value α, while if xn(s) is logistic-like (χ > 0), also the
value of its initial curvature χ plays a role (if χ is large, the
dose-response function will reach its asymptotic value for
relatively low doses).
An advantage of our methodology is that, as shown

below, σ and χ can be analytically calculated, and α esti-
mated, in function of the biochemical parameters of the
cascade. In turn, these results can be used to connect
the parameters with standard characteristics of response
functions, like the half maximal effective concentration
EC50, or effective Hill coefficient nH . For example, simple
estimates of the EC50 can be provided by the value of s
such that xn(s) = α/2 in Eqs. 4 and 5, yielding the results:

EC50 ∼
{

α
2σ if χ < 0
−σ+

√
σ 2+χ α

χ
if χ > 0

(6)

Effective Hill coefficients can be subjected to several def-
initions. A possible estimate may be obtained by com-
puting twice the response coefficient s x′

n(s)/xn(s) at s =
EC50.
Finding analytical conditions which maximize the

response amplitude α = lims→+∞ xn(s) is not trivial
because, as mentioned before, the function xn(s) is gen-
erally speaking intractable. Nevertheless, for a homoge-
neous cascade, we prove that (see Methods) the asymp-
totic value of the dose-response curve α, is lower bounded
by

x∗ = 1 − a − e − c + √
(1 − a − e − c)2 + 4(a − b e)

2
, (7)

with a, b, c, e defined in (2). x∗ is a fixed point of the map
f defined at Eq. 3 as fi. Thus, since x∗ ≤ α, requiring a
large x∗ is sufficient to have a large amplitude α and there-
fore this is a sufficient condition to fulfill the criteria to
promote an efficient forward signaling.
Moreover, for homogeneous parameters, the initial

slope of the dose-response is

σ = a
1 + b

( a
b e

)n−1
, (8)

and the initial curvature for n = 3, and dT , aD fixed, is

χ = −
(
b2 e2

a2
(
a + b (a + c − 1) − 1

) + a(1 + b)dT
aD

+ (1 + b)e
a

(
a + b (a + c − 1)

)
+ (1 + b)(a + c − 1)

)
a

1 + b

( a
b e

)4
.

(9)
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In Methods we derive these and more general formulas
for arbitrary n and inhomogeneous parameters.
Therefore we have shown how the parameters (σ ,χ , x∗)

characterizing the sketchy dose-response curves (Fig. 3)
can be expressed as functions of the cascade parameters
(a, b, c, e).
Now we want to state analytical conditions on parame-

ter sets, that enhance forward signaling. As simple crite-
ria, we say that a parameter set provides efficient signaling
if it maximizes σ and α if χ < 0, or maximize χ

and α if χ > 0. Table 1 sorts the sufficient condi-
tions deduced from these criteria, thus optimizing the
downstream propagation in a homogeneous cascade of
length 3.
In order to interpret the results summarized in this

table, let us remember that for an enzymatic reaction,
the enzyme is said to be saturated by its substrate when
the Michaelis-Menten constant is small compared with
the total concentration substrate. On the other hand, if
the total enzyme concentration is not small compared
with the total substrate, the free substrate is expected to
be sequestrated by the substrate-enzyme complex. More-
over, in the case of an enzymatic cycle, we call activation
parameter, the ratio between themaximal reaction rates of
the two enzymes phosphorylating and dephosphorylating
a protein.
In light of this terminology, the first line of Table 1 shows

that convex and logistic-like dose-responses are charac-
terized respectively by non-saturation and high saturation
of the phosphatases. A similar observation but concern-
ing a single enzymatic cycle was reported in [20]. So this
finding turns out to be generalizable to a whole cascade.
The second line of the Table indicates that a moderate
saturation of the kinase is also a condition that promotes
forward signaling, whatever the curvature of the dose-
response is. Finally, the third and fourth lines of the same

Table 1 Sufficient conditions to optimize the forward signaling.
The second column reports combined parameter ranges able to
enhance the forward response for convex (χ ≤ 0) and logistic-like
(χ > 0) curves, deduced analytically from the criteria of efficient
forward signaling. The third column refers to conditions obtained
below, with a numerical method based on a random parameter
sampling and maximizing the likelihood of these parameters
with respect to the forward signaling (See Discussion section)

Parameters Suff. conditions for Maximizing likelihood

χ ≤ 0 χ > 0 (cf. discussion below)

a = K1
YT

> 1 � 1 a3 � 1

b = K0
YT

< 1 < 1 bi � 1

1/e = k0 YT
k1 ET

� 1 � 1 1/ei > 1

c − e = ET
YT

� 1 � 1 ci − ei < 1
a
b = K1

K0
> 1 � 1 ai/bi > 1

Table reveal two general features enhancing forward sig-
naling: high activation of the enzymatic cycles as well
as non-sequestration of the active proteins by the phos-
phatase. This latter result is in agreement with the ones
discussed in [3], where the authors compare the effect of
sequestration and non-sequestration on logistic-like dose-
responses in a MAPK (Mitogen Activated Protein Kinase)
cascade.

Drug-response functions
By retroactivity we mean that a perturbation, applied at
a certain level of a cascade, propagates upstream, thus
altering the previous tiers. In our system, this perturba-
tion is initiated by a compound D (called drug) inhibiting
the activated protein at the nth tier. Our goal is to study
the effect of such a perturbation on the upstream lev-
els as a function of some normalized drug concentration
dT , assuming that the signal s at the top of the cascade is
constant and fixed at a high value.
We classify the retroactivity according to its maximal

propagation range, so that we call retroactivity of order k
(1 ≤ k ≤ n − 1), the variation of the activated protein
at the (n − k)th level as a function of the drug concen-
tration, described by the function xn−k(dT ), which we
refer to as drug-response function. In particular the high-
est order of retroactivity in a linear cascade corresponds
to the response curve x1(dT ).
As shown by [19], a perturbation propagates upstream

in an alternated way so that, at level n, the amount of
activated protein decreases, at level n − 1 it increases,
then it decreases at level n − 2 and so on, up to the first
level. It follows that function x1(dT ) is increasing if n is
even and decreasing if n is odd. Moreover, retroactivity
is overall attenuated in long cascades, but can propagate
and amplify its effect for n sufficiently small, e.g. equal to
three [11].
Here, although we derive the drug-response functions

in an iterative formulation inverting the map in (3) (cf.
Additional file 1), the study of the derivatives at the origin
dT = 0 becomes too complicated to be performed ana-
lytically, as we did for dose-response functions xi(s) for
1 ≤ i ≤ n. The main drawback is that, for dT = 0, we
have xi(dT ) 
= 0 for any 1 ≤ i ≤ n, so that the expres-
sions of the initial slope and curvature of function xi(dT )

do not simplify, as it does in the case of the dose-response
functions.
Therefore, in the following, we compute the amplitude

of the drug-response function by means of a numerical
approach, for n = 3 fixed, considering �xi the difference
between the values xi(dT = 0) and limdT→+∞ xi(dT ), for
i = 1, 2. In these computations xi(dT = 0) corresponds to
the limit of the dose-response function xi(s), for s → +∞,
while limdT→+∞ xi(dT ) corresponds to the limit of the
dose-response function xi(s), for s → +∞, for the same
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cascade but composed only by the first n − 1 levels (as
a result of the total sequestration of the last-level active
protein by the drug, at steady state).

Random sampling of the parameter space
In this section we consider a 3-tier signaling cascade and
numerically estimate the probability of finding one of the
possible signaling regimes, in function of key system’s
parameters. We define 8 signaling regimes and denote
them by (jkl), with j, k, l ∈ {0, 1}, where:

• j = 1 if the amplitude of the drug-response curve
x1(dT ) is larger than 5%, j = 0 otherwise;

• k = 1 if the amplitude of the drug-response curve
x2(dT ) is larger than 5%, k = 0 otherwise;

• l = 1 if the amplitude of the dose-response curve
x3(s) is larger than 50%, its slope at the origin is
larger than 1 or the curvature should be at least 1,
and l = 0 otherwise.

For instance, the signaling regime (001) corresponds to
parameters associated to a cascade which exclusively
exhibits forward propagation, while (110) is for exclusive
retroactive propagation. Signaling regimes of type (j1l)
will be said to possess first order retroactivity, whereas
regimes of the type (1kl) will be said to have second
order retroactivity. Later, to discuss the notion of signaling
motifs (cf. Fig. 5), it will be convenient to consider hybrid
signaling regimes like (1k0), where k is not determined
(k = 0, 1). Finally, (000) is the anti-signaling regime, as it
denotes the absence of any type of signaling response.
By performing a random sampling of the biochemical

parameters, like reaction rates and total concentrations
(see Methods), we have assessed the probability of each
regime, Fig. 1b.

Likelihoods of parameters for the signaling regimes
Our numerical investigation considers dimensional and
dimensionless parameters. The dimensional parameters
are coefficients of the steady state Eqs. 2, such that
total kinase concentrations, total phosphatase concen-
tration, Michaelis-Menten constants, etc... In the sequel
the dimensional parameters are simply called biochemical
parameters. On the other hand, the dimensionless param-
eters, say λ, are ratios of these biochemical parameters,
such as fractions of total phosphatase over total kinase
concentrations, and so on.
We perform a random sampling of the biochemical

parameters, with 18 dimensionless parameters being com-
puted from these first ones. Afterward, we estimate the
probability distributions (histograms) of all the dimen-
sionless parameters λ for each signaling regime (jkl)
defined above. Then, using Bayes’ formula (see Methods,
Eq. 20) we deduce the probability of finding a given

signaling regime (jkl), provided that a given parameter
value λ is picked up. This quantity, seen as a function of
λ, is called likelihood. We denote the likelihood normal-
ized by its maximum value by Ljkl(λ) (cf. Eq. 21). In order
to identify the region of the parameter space enhancing a
given type of signaling regime, our main strategy is to look
for the values of dimensionless parameters that maximize
the likelihood for the considered signaling regime. The
result can generally be expressed as inequality conditions
that should be satisfied between biochemical parameters.
On Fig. 4 each colored band shows the normalized

likelihood of one given parameter, obtained for every sig-
naling regimes (jkl). Thus, the intensity of the color in
each band is proportional to the probability that a spe-
cific regime (jkl), with j, k, l ∈ {0, 1}, occurs, in function
of a given dimensionless parameter, all the biochemical
parameters being chosen at random in a log-uniform dis-
tribution. In Additional file 2, the numerically computed
likelihoods are also represented as curves with estimated
errorbars.
We report here on our analysis of the likelihood vari-

ations relative to a cascade with inhomogeneous param-
eters. We mainly proceed by visual inspection of the
likelihood variations. In this way we can classify the
18 dimensionless parameters into two classes. The first
class corresponds to 9 parameters for which similar
ranges optimize the probability of any type of signaling
(jkl), (000) excluded. In the second class we put the 9
parameters left, which exhibit likelihood variations being
useful to discriminate between the signaling regimes,
and specifically related to the probability of a given
regime.
After a visual analysis of all the parameter likelihoods we

conclude that the following 9 dimensionless parameters
form a first class : EiT/YiT , K0

i /K1
i (i = 1, 2, 3), K0

i+1/K
1
i

(i = 1, 2), K0
3 /Y3T . For instance, we see that the range

enhancing the likelihood for any regime (jkl) 
= (000)
corresponds to choose K0

3 /Y3T as small as possible. On
the contrary choosing K0

3 /Y3T large hinders any type of
signaling regime.
On the other hand, as discussed below, the fol-

lowing 9 dimensionless parameters enable to discrim-
inate amongst the various types of signaling forms:
(k0i Yi−1,T )/(k1i EiT ) (i = 2, 3), YiT/Yi+1,T , YiT/K1

i , YiT/K0
i

(i = 1, 2), EiT/K1
i and EiT/K0

i (i = 2, 3).
In the following two subsections we first report on con-

ditions about the biochemical parameters that promote
indistinguishably any form of signaling regimes. Then
we discuss the role of other conditions on biochemical
parameters specific to each regime.

General parameter conditions promoting signaling
Some constraints on parameters appear to be common to
any signaling regimes. Moreover, when these conditions
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Fig. 4 Normalized likelihoods of 18 dimensionless parameters (proportional to color intensities), superimposed for all signaling regimes (jkl) 
= (000)

are chosen opposite, the probability of getting any type
of signaling tends to be negligible. These conditions are
listed as follows :

(i) EiT ≤ YiT (i = 1, 2, 3) : at each tier of the cascade,
the sequestration of the proteins by their
phosphatase is absent or moderate.
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(ii) K0
i � K1

i (i = 1, 2, 3) : enzymatic asymmetry in
cycle i : the affinity of the kinase for its substrate
should be larger than the one of its phosphatase.

(iii) K0
i+1 � K1

i (i = 1, 2) : enzymatic asymmetry at the
junction of tiers i and i + 1 : the affinity of an
activated protein for its substrate, i.e. the next protein
in the cascade, is larger than for its own phosphatase.

(iv) K0
3 � Y3T : the second kinase Y 1

2 is saturated.

Regime-specific parameter conditions
The various signaling regimes are actually determined
by a specific combination of parameters concerning
cycle activation, protein sequestration and enzyme sat-
uration. Here we discuss the effect of the second class
of parameters that specifically favor some types of
regime.

(v) 1/ei = (k0i Yi−1,T )/(k1i EiT ) (i = 2, 3) : cycle
deactivation (ei > 1) gives rise to retroactive
signaling. Notably, retroactivity appears whenever
the third tier is deactivated (e3 > 1). In this case, its
effect can be either local (limited to the second tier,
cf. regimes (01l)) if the second tier is activated
(e2 < 1 so preventing an upper propagation), or
global (e2 > 1, affecting both the previous tiers, cf.
regimes (1kl)) if also the second tier is deactivated.

(vi) YiT/Yi+1,T (i = 1, 2) : 4 distinct protein
progressions typify the retroactive regimes, i.e. 00l
(no retroactivity), 01l (first order retroactivity), 10l
(second order retroactivity), and 11l (first and second
order retroactivity), with l ∈ {0, 1}. This parameter is
associated to sequestration. More particularly, the
sequestration of the third inactive protein by its
kinase (Y2T/Y3T � 1) prevents any retroactive
propagation (regimes (000) and (001)). The
sequestration of the second inactive protein by its
kinase (Y1T/Y2T � 1) promotes first order
retroactivity, i.e. regime (01l). Inversely,
non-sequestration (Y1T/Y2T ∼ 1) induces second
order retroactivity, i.e. regime (1kl).

(vii) K1
i /YiT (i = 1, 2, 3) : phosphatase saturation

(K1
i /YiT < 1) or non-saturation (K1

i /YiT ≥ 1) marks
out the appearance of second order retroactivity and
forward signaling. In particular, saturation
(respectively non-saturation) of the first phosphatase
is associated to negligible (respectively significative)
second order retroactivity, i.e. j = 0 (respectively
j = 1). Instead, saturation (respectively
non-saturation) of the third phosphatase is
associated to significative (respectively negligible)
forward propagation, i.e. l = 1 (respectively l = 0).
Moreover, saturated phosphatase at the second tier
marks the complete absence of retroactivity (regimes
(000) and (001)).

(viii) K0
i /YiT (i = 1, 2) : saturation (respectively

non-saturation) of the input signal, K0
1 /Y1T < 1

(respectively K0
1 /Y1T ≥ 1), characterizes a negligible

(significative) second order retroactivity, i.e. j = 0
(respectively j = 1). Non-saturation of the kinase
activating the second tier (K0

1 /Y1T ≥ 1) is typical of
first order retroactivity (regimes (010) and (011)).

This analysis leads to the following criteria to enhance
to probability P of significant response at each stage j, k, l
within a signaling regime (jkl):

(I) P(j = 1) is enhanced if and only if Y1T � K1
1 .

(II) P(k = 1) is enhanced if e2 < 1 and e3 > 1.
(III) P(l = 1) is enhanced if and only if E3T � Y3T .

Moreover we claim the following necessary conditions:

(IV) If (I) holds then e2 > 1 (notably, e2 > 1 for (110) and
(111), and e2 � 1 for (100) and (101)).

(V) If conditions of (II) holds then j = 0.

Graphical representation of the signaling regimes
In the previous section, conditions on biochemical param-
eters which characterize the signaling regimes, have been
deduced from the likelihoods of dimensionless parame-
ters. At this stage it is difficult to imagine how, among
the various signaling regimes, such conditions are similar
or different from each other. Therefore in this section we
introduce a method to graphically depict these conditions
and visually link them to the cascade signaling properties.
The idea is to associate a pictorial code to the parameters
in such a way that their graphical representation conveys
qualitatively the corresponding signaling regimes.
The method is based on the visual examination of the

maximal likelihoods of dimensionless parameters (Fig. 4).
Its application, detailed in Additional file 3, leads to draw
the 5 signaling motifs depicted on Fig. 5, which are asso-
ciated respectively to signaling regimes (001), (010), (011),
(1k0), (1k1). (Recall that the two latter denote hybrid sig-
naling regimes, with non-determined k = 0 or 1). The
procedure, providing conditions on biochemical param-
eters which optimize the probability to observe such
regimes, consists in 5 steps described below.

1. Fix the size of Y2T and Y3T , then Y1T (blue ellipses)
as follows.

(a) If Y2T � Y3T then draw Y2T large and Y3T
medium. Then, if Y1T � Y2T , draw Y1T
medium.

(b) If Y2T < Y3T (with a magnitude difference of
100 at most) then draw Y2T medium and Y3T
large. Then if Y1T ∼ Y2T , draw Y1T medium
and if Y1T < Y2T , draw Y1T small.
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Fig. 5Motifs representing qualitatively conditions on the cascade’s main parameters (top left) optimizing the likelihood of each signaling regime.
Graphical codes for the biochemical species: the triangle corresponds to input signal Y10 , the ellipses to total proteins YiT or total phosphatases EiT ,
and the number and direction of the arrows on the segments represent the intensity of cycle activation (if downward arrows) or cycle deactivation
(if upward arrows). Color: blue is for kinase, green for phosphatase; size: total concentration of the species; texture: shaded means saturated, empty
unsaturated. Drawing of motifs is detailed in Additional file 3

(c) If Y2T � Y3T (with a magnitude difference
larger than 100), then draw Y2T medium and
Y3T large. Then if Y1T � Y2T , draw Y1T large.

2. Fix the size of the EiT ’s (i = 1, 2, 3).

(a) If EiT � YiT then draw EiT small.
(b) If EiT ∼ YiT then draw EiT of the same size of

YiT .
(c) If EiT � YiT then draw EiT extra large.

3. Represent signaling connectivity (i = 1, 2).

(a) If ei > 1, draw one arrow pointing upward.
(b) If ei < 1, draw one arrow pointing downward.

4. Empty/full shapes.

(a) If YiT � K0
i for i = 1, fill in the red triangle.

(b) If YiT � K0
i for i = 2, 3, fill in the (i − 1)th

blue ellipse.
(c) If YiT � K1

i for i = 1, 2, 3, fill in the i th green
ellipse.

5. Draw the motif contour following the largest ellipses.
Instead of a straight line, the contour will start with a
cusp if the red triangle is empty while the first blue
solid ellipse is full, and it will end with a cusp if
step 2.a is fulfilled.
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Using the last step of the procedure, the contour line
traced around each motif follows the total proteins’ pro-
gression and start or ends with a cusp according to the
presence of, respectively, second-order retroactivity or
forward signaling. Moreover the flow of signal propaga-
tion is directed by arrows pointing upward or downward,
according to the ei’s (i = 2, 3). As a matter of fact it
appears that the final picture can be easily interpreted
in terms of signaling regimes (jkl), with the convention
that a cusp or a bottleneck in the figure contour means a
successful amplitude response at the corresponding tier.
Therefore one main benefit of the procedure is to auto-
matically turn the parameter conditions analyzed in last
section, into qualitative motifs which are easy to read out
in terms of their signaling properties. Conversely, these
patterns are easier to remember than a list of conditions,
and can thus be used as a tool to recover the criteria for
each of signaling schemes.
In conclusion, these pictures show that retroactivity is

promoted by four features: the last tier is deactivated
(ei > 1), the second active protein is sequestrated, the sec-
ond phosphatase is non-saturated and the third inactive
protein is not sequestrated.
In particular, second-order retroactivity is enhanced if

the first protein is saturated, and the input signal and
the first phosphatase are not; inversely for first-order
retroactivity.
A forward response (l = 1) is (most likely) negligible

if the last active protein is not sequestrated by its phos-
phatase (E3T � Y3T ). On the other hand, regime (001) is
favored by a saturated phosphatase at the second tier.

Discussion
Kinase cascades are a key component of the living cell
systems biology. Relying on several biochemical param-
eters, the standard functioning of a cascade is to trans-
mit forward signals between the top and the bottom of
the pathway. Nevertheless, the possibility of transmitting
information backward in the cascade, due to sequestration
effects of the enzymes, has been demonstrated by several
studies (see Background). However, the backward – or
what we called retroactive – signaling is not considered in
the current literature as a standard property that cascades
should possess or avoid. Therefore ourmain question, that
was raised at the start of this paper, was to study how
cascade parameters match when promoting one or the
other mode of signaling. How similar or different were
the parameter sets that enabled forward or retroactive
signaling? Were they incompatible? Could we character-
ize these parameter sets in terms of biochemical concepts
such as enzymatic cycle activation, enzyme saturation or
sequestration?
These questions were theoretically approached with

analytical and numerical methods. Both ways showed

advantages and limitations. One advantage of the ana-
lytical trail was to enable a study of the dose-response
function for cascades with arbitrary length n. With this
general approach, however, we usually had to limit our
analysis to homogeneous cascades (i.e. same parameters
at each tier), although some results can be generalized
to inhomogeneous parameters. Nevertheless we showed
that the dose-response function could be represented as
the iteration of an explicit rational function. This iterative
structure allowed us to compute analytical properties of
the response function, like for example its first and second
derivatives at the origin. These computations, together
with the determination of a lower bound of the maximal
value of the response function, revealed to be invaluable in
discussing conditions on the biochemical parameters that
optimize forward signaling in homogeneous cascades.
These results, summarized on Table 1, were corroborated
later by the numerical computations, that explored also
cascades with inhomogeneous parameters.
However, contrary to the dose-response curve, the ana-

lytical study of the drug-response function was out of
reach with our analytical tools. Thus the advantage of
the considered numerical approach was to extend our
analytical investigation to inhomogeneous cascades, and
to study the drug-responses and retroactivity properties.
As the number of parameters increases with the length
of the cascade, one limitation of this approach, how-
ever, was to focus only on the case of a 3-tier cascade.
The methodology was based on a random scan of the
parameter space of such cascades, and a subsequent clas-
sification of parameter ranges according to their ability to
produce dose-response or drug-response curves satisfying
minimal criteria (e.g. regarding the response amplitudes).
A bayesian analysis of a set of dimensionless parame-
ters (ratios of two biochemical parameters) allowed us to
infer biochemical conditions favoring a specific signaling
regime.
In what concerns the forward signaling regime,

although both analytical and numerical approaches are
very different, they point towards the same conditions,
as reported in Table 1. In this table the second column
reports analytical conditions enhancing forward signal-
ing in a homogeneous cascade, whereas the third col-
umn describes conditions maximizing the likelihood of
inhomogeneous parameters relative to the forward sig-
naling regime. The obtained conditions are found to be
compatible in all cases, sometimes with some dependence
of the cascade layer. In particular: (i) the affinity of the sub-
strate for the kinase should be larger than its affinity for
the phosphatase, creating what we call enzymatic asym-
metry, (ii) the phosphatases should be in small amount
compared with their total substrate, and (iii) the maximal
rate of phosphorylation should be larger than the maximal
rate of the dephosphorylation.
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In the context of theoretical studies of signaling systems,
the use of random scans of biochemical parameters, in
order to determine parameter ranges or conditions giving
a sought property, has been considered by several authors.
Typically these authors uniformly scanned dimen-
sional parameters [21–23], or dimensionless parameters
[12, 24, 25]. Often, the use of dimensionless parameters
is motivated by a procedure of non-dimensionalization
of the kinetic or of the steady state equations. In our
study, we chose a random sampling of dimensional
parameters. We believe that in general it leads to a
better interpretration of the results. The reason is that
if we start by scanning the dimensionless parameter
space then, because of the change of variables between
the dimensionless and dimensional parameters, then a
uniform probability distribution of the dimensionless
parameters is transformed into a non-uniform density for
the dimensional parameters. Then the conclusions drawn
from the statistical results must be associated with some
non-uniform distribution of dimensional parameters.
These non-uniform distributions might be non-trivial
to figure out, and overall rather arbitrary, as there exist
several ways to design non-dimensionalizing procedures.
Therefore, although in our methodology we statistically
analyze a set of dimensionless parameters in view of
biochemical interpretation, dimensional biochemical
parameters were first randomly sampled (in log-uniform
distribution), the dimensionless parameter being deduced
afterwards from these samplings.
In our study, amongst the 18 sampled biochemical

parameters, 12 dimensions corresponded to chemical
concentrations and 6 dimensions to reaction rates (with
dimension of inverse of time). They were all chosen in
the interval [ 10−2, 102], thus considering 4 orders of mag-
nitude [−2, 2] in uniform log10 scale. The interpretation
of the results depends yet on the choice of the reference
unit concentration (the “0" in log scale). For example, if
the reference dimensional concentration is chosen as 0.1
μM, this leads to interpreting the scanned intervals as the
range [1 nM, 10 μM], which seems reasonable as intracel-
lular concentrations [15]. However this is just an example
and the choice of the reference unit concentration remains
a degree of freedom in our numerical methodology.
On Fig. 1b we reported estimated probabilities of four

signaling modes of the cascade, i.e. no-signaling, for-
ward signaling, retrosignaling, or simultaneous forward
and retro-signaling. Obviously, the absolute value of these
numbers depend on the arbitrary thresholds on response
amplitudes, that we fixed to assess the occurence of these
signalingmodes. To give evidence of the effect of changing
these thresholds on the probabilities of signaling, Table 2
reports the occurence frequency of the 8 considered sig-
naling regimes, for two different choices of thresholds
(distinguishing further amongst the four main signaling

Table 2 Probabilities of the signaling regimes according to
criteria stated in Results, with 2 different choices of thresholds for
the response amplitudes. Threshold 1: �x1,�x2 > 5%,
�x3 > 50%. Threshold 2: �x1,�x2 > 10%, �x3 > 75%

Regimes Probabilities (in %)

Threshold 1 Threshold 2

(000) 66,11 ± 0.05 72,15 ± 0,04

(001) 19,74 ± 0.04 16,78 ± 0,04

(010) 11,35 ± 0.03 9,73 ± 0,03

(011) 1,89 ± 0.01 0,828 ± 0,009

(110) 0,474 ± 0.007 0,228 ± 0,004

(100) 0,383 ± 0.006 0,271 ± 0,005

(111) 0,035 ± 0.002 0,0068 ± 0,0008

(101) 0,027 ± 0.002 0,0087 ± 0,0009

modes of the cascades, the cases of retroactivity of first
and of second order). Although the actual numbers are
different when the thresholds are increased, we observe
constancies.
Obviously, the most probable parameters are always

the “non-signaling" cases (000), and the most probable
non-trivial signaling regime is the pure forward signal-
ing (001). Then the probability of signaling regimes always
decreases markedly between the cases of retrosignaling
of first and second order. In particular one observes that
the probabilities of regimes (1k1), admitting both forward
and retro-signaling of order 2, are the smallest ones, and
get smaller and smaller with higher thresholds. Therefore
as a whole, these numbers confirm the general tendency
of our numerical results: system’s parameters enabling
bidirectional signaling correspond to the most unlikely
cases.
This property can also be characterized in a quantitative

way by computing the conditional probability that bidirec-
tional signaling occurs, knowing that the system exhibits
at least one regime of signaling (so excluding (000)). This
conditional probability is found to be 6% with the thresh-
olds corresponding to column 1 of Table 2, and drops to
3%with data in the second column.Moreover we checked
that it decreases from 6 to 5% when the uniform ranges
of biochemical parameters are extended from [−2, 2] to
[−2.5, 2.5] (data not shown). Therefore we can conclude
that requiring both response amplitudes of direct and
retrosignaling to be large leads to an antagonism in the
parameter sets achieving both requirements. The over-
all combination of forward and retro-signaling appears
to be still more rare. This conclusion answers one of the
principal question addressed by this study.
Another question addressed in Background was to

characterize, for each signaling regimes, conditions on
biochemical parameters that promote the corresponding
regimes. We have achieved such characterization by
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looking, for each signaling regime, at the likelihood
of dimensionless parameters associated with the con-
cepts of enzyme saturation, enzyme sequestration,
kinase/phosphatase affinity asymmetry, or enzymatic
cycle activation. Here also the choice of thresholds on
the amplitude responses has a mild importance on the
conclusions we point out, since we highlighted parame-
ter conditions that maximized the (normalized) likelihood
of parameters, for each signaling regime. By considering
higher thresholds, we have checked that we keep same
ranges where the likelihood is maximized, even if the
actual value of the likelihood is reduced (see Additional
file 4).
Therefore the obtained conditions on parameters, as

reported in Results, could be useful to distinguish param-
eter sets optimizing the probability to get the various
regimes of signaling. These conditions are graphically rep-
resented in Fig. 5, with a motif coding that is suggestive
of the corresponding form of signaling. The motif can
be drawn following an algorithm, which could be imple-
mented in an automatic way, in order to facilitate the
association between a set of parameters and the probable

signaling regimes that could be observed with them. On
the other hand, level-specific parameter conditions can be
related to the probability for a distinct stage to respond or
not to upstream or downstream perturbations, as claimed
in our criteria (I)–(III).
These graphs embody also a method to restrict param-

eter space in order to enhance the probability of the main
modes of signaling, forward, or retroactive, or both. In
order to control how the probability of each signaling
regime is optimized by choosing parameter values around
the likelihood maxima, we divided the ranges of all the
18 parameters in three intervals: high values, medium val-
ues, low values. Each parameter was restricted to one of
the three intervals depending on where its likelihood was
maximized. As there is one restriction for each param-
eter, the intersection of those restricted intervals could
leave, at the end, no more than 0.1% of the initial number
of simulation sets. The new probabilities of each regime
were computed and compared with the former simula-
tion sets in order to see how likely is a given regime
if we restrict the ranges of the biochemical parameters.
The results are summarized on Fig. 6 (see also Additional

Fig. 6We consider the 5 signaling regimes corresponding to motifs of Fig. 5, as well as associated parameter restrictions characterizing each of
them (see details in Discussion). Then, each panel displays the probabilities of a given signaling regime in function of the considered parameter
restrictions. Consistently, the probability to get a given signaling regime is maximized by choosing the parameter restrictions characterizing it, and
this maximum is significantly higher than the probability obtained from a log-uniform distribution of biochemical parameters without any
restriction (cf. first bar of the histogram, NR)
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file 5). In a consistent way, these histograms show that
the probability to observe a given signaling regime, among
one of the 5 motifs of Fig. 5, is maximized by choosing
parameter restrictions associated with the corresponding
signaling regime. In particular we see that the optimized
probabilities are much higher than in the unrestricted
case (top panel). Only the probability of regimes involving
both forward signaling and retroactive signaling of order
2 remains relatively small (3,7%), which evokes once again
the scarcity of bidirectional signaling.

Conclusion
Living organisms rely strongly on biochemistry. Indeed
signaling pathways are meant to transduce physical or
chemical stimuli of the external world, relevant to liv-
ing cells, into variations of activated biochemical species.
In this paper, in addition to the common dose-response
of a signaling cascade, we have also considered the
bottom-up drug-response that discloses, when it exists,
a retroactive capability of the signaling cascade. Thus
signaling cascades can be categorized into 4 modes of
responses, according to the existence or not of forward
or of retroactive responses. An example of this classifica-
tion with estimated probabilities was given in Background
in Fig. 1b. This result was further discussed in the pre-
vious section. Although the quantitative aspects of our
classification depends on some arbitrariness (e.g. thresh-
olds of the amplitude responses for categorization, or the
method of random scan, discussed below inMethods), our
work confirmed the initial intuition that was exposed in
Background: there is an opposition between the param-
eter sets of the cascade that promote forward (i.e. usual)
signaling, and parameters that enable retroactive regimes,
i.e. backward signaling.
Thus our main conclusion is that the parameter sets

allowing both modes of responses, forward and retroac-
tive, occur rarely. Actually, signaling cascades are gener-
ally studied uniquely for their forward signaling ability.
For instance in cancer etiology, attention is focused on
over-activation of kinases in signaling pathways involved
in cell proliferation, such as Mitogen Activated Protein
Kinase cascades (MAPK). When these cascade pathways
are deregulated in this manner, this means that their for-
ward signaling properties are very effective. Moreover in
this case, cancer therapies are based on kinase inhibition,
which is described by the drug binding term in our math-
ematical modeling. Therefore, our main result conforts
the point of view that in using these therapies, retroactive
properties of signaling cascade can be neglected most of
the time, eventhough rare off-target effects should not be
excluded [12].
On the other hand, henceforth our work prompts the

study of those signaling pathways that are overlooked
a priori, because ineffective for forward signaling. Our

analysis opens the perspective that such systems possibly
hide some usefulness in controlling pathways, due to their
qualities of retrosignaling. These properties could prove
interesting in the fields of drug design or synthetic biol-
ogy. Indeed we showed that in signaling cascades, novel
functionalities can appear precisely in conditions where
the biochemical system seems inoperant for forward
signaling.

Methods
Themathematical model
The kinetic description of the system illustrated in Fig. 1a
is deduced by applying the law of mass action to the
following reaction scheme (1 ≤ i ≤ n):

Y 0
i + Y 1

i−1
a0i−⇀↽−
d0i

C0
i

k0i−→ Y 1
i + Y 1

i−1 (10a)

Y 1
i + Ei

a1i−⇀↽−
d1i

C1
i

k1i−→ Y 0
i + Ei (10b)

Y 1
n + D

aD−⇀↽−
dD

C (10c)

We assume that both the activation reaction (10a)
and the inactivation reaction (10b) are enzymatic and
irreversible.
We denote Y the protein (kinase), C the enzyme-

substrate complex, and E the phosphatase, in each cycle.
The lower index i = 1, . . . , n states the cascade level; while
the upper indices 0 and 1 refer to variables parameters
involved, respectively, in the activation and deactivation
reactions. Notably, at any level i, protein Yi is found in
either its inactivated or activated form, denoted by Y 0

i or
Y 1
i , respectively (the upper index can be interpreted e.g. as

the absence “0” or the presence “1” of a phosphate group
bound to Yi).
The system of non-linear ordinary differential equations

(ODEs) corresponding to the kinetic reactions in (10) is
given by (1 ≤ i ≤ n):

dC0
i

dt
= a0i Y

0
i Y 1

i−1 − (d0i + k0i )C
0
i (11a)

dC1
i

dt
= a1i Y

1
i Ei − (d1i + k1i )C

1
i (11b)

dCD
dt

= aD Y 1
n D − dD CD (11c)

dY 0
i

dt
= −a0i Y

0
i Y 1

i−1 + d0i C
0
i + k1i C

1
i (11d)

dY 1
i

dt
= −a1i Y

1
i Ei + d1i C

1
i + k0i C

0
i

− a0i+1Y
0
i+1Y

1
i + (d0i+1 + k0i+1)C

0
i+1, (11e)

with a0n+1 = aD, Y 0
n+1 = D, d0n+1 = dD, k0n+1 = 0, and

C0
n+1 = CD.
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Steady states are obtained by setting the ODEs to zero
and using the conservation laws (1 ≤ i ≤ n):

EiT = Ei + C1
i , Y0T = Y 1

0 + C0
1 , DT = D + CD,

(12a)
YiT = Y 0

i + Y 1
i + C0

i + C1
i + C0

i+1, with C0
n+1 = CD .

(12b)

From the sum of (11a) and (11d), we get k0i C0
i −k1i C

1
i =

0. From (11a) we have C0
i = Y 1

i−1Y
0
i

K0
i

; from (11b) and

the first equation of (12a) we obtain C1
i = EiT

Y 1
i

K1
i +Y 1

i
,

where we have defined the Michaelis-Menten constants
Kj
i = (dji + kji)/a

j
i, for j = {0, 1}. In particular, for i = 1,

using the second conservation law of (12a), we can write
C0
1 = Y0T

Y 0
1

K0
1+Y 0

1
. Also, combining (11c) with the third

equation of (12a), we get CD = DT
Y 1
n

KD+Y 1
n
, where we have

defined the drug dissociation constant KD = dD/aD.
Hence, we end with the following system of 2n + 2

steady-state equations (1 ≤ i ≤ n):

k0i
Y 1
i−1Y

0
i

K0
i

− k1i EiT
Y 1
i

K1
i + Y 1

i
= 0

YiT = Y 0
i + Y 1

i + Y 1
i−1Y

0
i

K0
i

+ EiT
Y 1
i

K1
i + Y 1

i
+ Y 1

1 Y
0
i+1

K0
i+1

Y0T = Y 1
0 + Y0T

Y 0
1

K0
1 + Y 0

1

CD(KD + Y 1
n ) − DT Y 1

n = 0 .
(13)

In particular, we work out the second Eq. 13 with the
aim of making it dependent on only one variable, e.g. Y 1

i .
We replace in the order: Y 0

i = K0
i

Y 1
i−1

C0
i , C0

i = k1i
k0i

C1
i , and

C1
i = EiT

Y 1
i

K1
i +Y 1

i
. Then we divide by the total protein YiT

to get

1 = K0
i

Y 1
i−1

k1i
k0i

EiT
YiT

Y 1
i

K1
i + Y 1

i
+

(
k1i
k0i

+ 1
)
EiT
YiT

Y 1
i

K1
i + Y 1

i

+ Y 1
i

YiT
+ k1i+1

k0i+1

Ei+1,T
YiT

Y 1
i+1

K1
i+1 + Y 1

i+1
.

We finally recover the dimensionless variables xi =
Y 1
i /YiT (i.e. the normalized active proteins) , and intro-

duce the dimensionless parameters ai, bi, ci, and ei defined
by Eq. (2). Hence, it follows

xi−1 = bieixi
(xi + ai)

(
1−xi−ei+1

xi+1
xi+1+ai+1

)
− cixi

, 1 ≤ i ≤ n,

(14)

such that:

x0 = 1 − x1
s(x1 + a1)

, with s = k01 Y0T
k11 E1T

, (15)

xn+1 = xn, an+1 = aD, en+1 = dT .

These latter equalities come from the particular cases of
i = 1 and i = n, to obtain which we replace, respectively,
C0
1 = Y0T

Y 0
1

K0
1+Y 0

1
and CD = DT

Y 1
n

KD+Y 1
n
, into the second

equation of system (13). Explicitly, we can express Eq. 13
as system (1), then more compactly as (3).

Calculation of the first derivative of xn(s)
In the two following sections, we derive the general
expressions of slope and curvature of the dose-response
function for arbitrary biochemical parameters and cas-
cade length. Let us consider the following general system
defined by recursion:

zi−1 = Fi(zi) , (16)

where zi =
(
xi
yi

)
and Fi =

(
fi
gi

)
, for 1 ≤ i ≤ n.

By iterative application, we can write z0 as a function of
zn, i.e. z0 = F1◦F2◦. . .◦Fn(zn) , and in particular calculate
its first derivative with respect to variable xn, according to
the chain rule:

z′
0 =

∏
1≤i≤n

Ji(zi) · z′
n , (17)

where z′
i = dzi

dxn , and Ji =
(

∂ fi
∂xi

∂ fi
∂yi

∂gi
∂xi

∂gi
∂yi

)
is the jacobian

matrix associated to the general dynamical system (16).
Let us now suppose that for 1 < i ≤ n, fi : zi �→

bieixi
(xi+ai)

(
1−xi−ei+1

yi
yi+ai+1

)
−cixi

,

and gi : zi �→ xi (1 ≤ i ≤ n) and set z0 =
(

s
x1

)
.

Thus, J1 =
(

∂ f̂1
∂x1

∂ f̂1
∂y1

1 0

)
(cf. Eq. 3) and Ji =(

∂ fi
∂xi

∂ fi
∂yi

1 0

)
, for 1 < i ≤ n (assuming en+1 = dT = 0, so

f̂n coincides with fn).
It follows that the first component of z′

0, i.e. s′(xn) = ds
dxn ,

is given by

s′(xn) = (1 0) ·
∏

1≤i≤n
Ji(xi, xi+1) ·

(
1
0

)
. (18)

The slope of the dose-response function xn(s) at the ori-
gin is simply obtained by inverting expression (18) over
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the biologically relevant domain [ 0,α), evaluating it in
s = 0. Hence, we get

x′
n(0) = a1

1 + b1

∏
2≤i≤n

ai
bi ei

= K1
1

Y1T + K0
1

∏
2≤i≤n

k0i Yi−1,T K1
i

k1i EiT K0
i

.
(19)

Let us note that this formula is derived for an arbitrary
cascade with inhomogeneous parameters, describing the
contribution of any system’s parameter to the slope of the
dose-response function. In particular, for homogeneous
parameters, the initial slope is given by Eq. 8.

Calculation of the second derivative of xn(s)
Let us assume that z0(xn) is a twice differentiable func-
tion and let Ji be the jacobian matrix and Hfi =⎛
⎝ ∂2fi

∂x2i
∂2fi

∂xi∂yi
∂2fi

∂xi∂yi
∂2fi
∂y2i

⎞
⎠ and Hgi =

⎛
⎝ ∂2gi

∂x2i
∂2gi

∂xi∂yi
∂2gi

∂xi∂yi
∂2gi
∂y2i

⎞
⎠ the hessian

matrices associated to (16).
Deriving expression (17) with respect to xn once again,

we find

z′′
0 =

∏
1≤i≤n

Ji(zi) · z′′
n +

∑
0≤j<n

∏
0≤i≤j

Ji(zi)

·

⎛
⎜⎜⎜⎜⎝

(
n∏

k=j+2
Jk(zk) · z′

n

)T

· Hfj+1(zj+1) ·
n∏

k=j+2
Jk(zk) · z′

n(
n∏

k=j+2
Jk(zk) · z′

n

)T

· Hgj+1(zj+1) ·
n∏

k=j+2
Jk(zk) · z′

n

⎞
⎟⎟⎟⎟⎠

with J0 = I2 (the identity matrix 2× 2).
By selecting the first component of z′′

0 , denoted s′′(xn),
we calculate the inverse function through the relation

x′′
n(s) = − s′′(xn)

(s′(xn))3
.

Although the evaluation of x′′
n(s) at the origin makes the

expression simpler, the general formula for arbitrary n still
remains cumbersome, and symbolic computations (e.g.
with Maple™) are necessary. As an example, for n = 3 and
homogeneous parameters, the initial curvature is given in
Eq. 9.
We remark that, with respect to the initial slope x′′

n(0)
depends on the whole parameter set ai, bi, ci, and ei.

Proof of the lower bound
We demonstrate here that, for homogeneous cascades of
arbitrary length n, the value of the maximum response
α for large stimulus s is lower bounded by the strictly

positive fixed point x∗ of the equation xi−1 = f (xi, xi+1),
whenever it exists, with f being defined in (1b).
We firstly rewrite system (14) as

1 = f (x1, x2)
xi−1 = f (xi, xi+1), 1 < i < n
xn−1 = f (xn, 0)

where we have considered s → +∞ (implying x0 tend-
ing to 1 from (15)) and dT fixed to 0 (without loss of
generality).
Let us suppose the claim is false, that is xn < x∗.
By considering the partial derivatives of f (x, y), one can

prove that f is increasing in y for all x, and increasing in x
for y = 0 or y = x∗.
In fact, from (1b) one calculates ∂ f

∂y =
abex(x+a)

(y+a)2((x+a)(1−x−ey/(y+a))−cx)2 which is always positive,

and ∂ f
∂x = be(a(1−ey/(y+a))+x2)

((x+a)(1−x−ey/(y+a))−cx)2 which is positive if and
only if a(1 − ey/(y + a)) + x2 > 0. For y = 0 the proof
is immediate. For y = x∗, we consider the fixed point
equation x∗ = bex∗

(x∗+a)(1−x∗−ex∗/(x∗+a))−cx∗ > 0 which
implies that the denominator must be positive. Thus, in
particular 1 − x∗ − ex∗/(x∗ + a) > 0 is sufficient and
necessary for the positiveness of ∂ f

∂x (x, x
∗).

Hence, we obtain f (xn, 0) < f (xn, x∗) < f (x∗, x∗),
namely xn−1 < x∗. Then, f (xn−1, xn) < f (xn−1, x∗) <

f (x∗, x∗), i.e. xn−2 < x∗. Eventually it follows 1 = x0 < x∗.
However, from (7) one can verify that x∗ ≤ 1. Therefore,
our claim x∗ ≤ xn must be true.

The forward signaling regime with homogeneous
parameters
In this section, we derive the parameter ranges opti-
mizing the dose-response of a homogeneous cascade, as
summarized in Table 1 in Results.
As shown in Fig. 3, we work on an analytical piecewise

approximation of the dose-response curve (cf. (4) and (5))
based on the initial slope σ , the initial curvature χ , and the
asymptotic value α which we proved to be lower bounded
by the fixed point x∗ of function fn−1 (cf. system (3)).
We analyze the case for n = 3. In general, we remark

that the forward signaling is enhanced for dT = 0,
namely when no fraction of the last active protein gets
sequestrated by the drug.
We firstly study the sign of the initial curvature χ ,

according to the criteria of efficient forward signaling
introduced in Results. From (9) we see that the sign is con-
trolled by the terms a+ b (a+ c− 1) − 1, a+ b (a+ c− 1)
and a + c − 1.
In particular, χ results to be non-positive if a > 1. Fur-

thermore, for the criterion above mentioned, the slope
and the fixed point have to be as large as possible. Thus,
from (8) we require a � b e and b < 1, and then x∗ in (7)
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is maximized if it also yields e � 1 and c � 1 (from which
it follows ET/YT � 1, cf. Table 1).
Conversely, the positiveness of χ is assured by the con-

dition a + b (a + c − 1) < 0 (i.e. a/b + a + c − 1 <

0 implying a + b (a + c − 1) − 1 < 0 and a + c −
1 < 0 too), which is actually satisfied if a � b and
a, c � 1. Moreover, χ has to be maximized through the
term a

1+b
( a
be

)4 in Eq. 9, namely if a � b e and b < 1.
Eventually, all these conditions ensure x∗ to be already
maximized.

Random sampling of parameters
Although we could achieve some analytical results in the
previous sections, these latter are mainly concerned with
the regimes of forward signaling (jk1), j, k ∈ {0, 1} in
cascades with homogeneous parameters. To go further we
perform numerical investigations by randomly sampling
the full parameter space, and then classify statistically all
the parameter sets according to some characteristics of
the response functions they give rise to. The objective is to
point out the typical values of parameter that favor one of
the 7 signaling regimes (jkl) 
= (000). Themain tool which
is considered below is to seek for parameter conditions
that maximize the so-called likelihood of the parameters
in the various regimes (cf. Eq. (21) below).
As we want to look for conditions on parameters that

can be formulated in terms of dimensionless parameters,
we consider ratios of biochemical parameters to be ana-
lyzed. On the other hand we first sample the following
20 biochemical parameters: total phosphatases EiT , total
kinases YiT , Michaelis-Menten constants K0

i , K1
i , catalytic

rates k0i , k1i . The 20 biochemical parameters were sampled
in logarithmic scale, uniformly in the range 10−2 to 102
generating 1.000.000 sets, using Latin hypercube method
[26, 27]. This technique consists in dividing the hyper-
space R

20 into 1.000.000 intervals for each parameter. A
random set is formed by selecting one random interval
for each parameter without replacement, and with those
values, constructing one set of values for the 20 differ-
ent biochemical parameters we focused on. This method
guarantees an exhaustive exploration of the hyperspace.
As the Michaelis-Menten constants are parameters

which condense information in equilibrium for enzy-
matic cycles but no dynamic rates, sampling this constants
means an extra degree of freedom to choose some of the
dynamic rates, in this work we choose dji = 1 and use Kj

i

to compute aji = dji+kji
Kj
i
, for 1 ≤ i ≤ n, j ∈ {0, 1}. Finally,

with all the dynamic rates, we solved the ODEs for two
different scenarios:

1. Stimulus → +∞, Drug = 0
2. Stimulus → +∞, Drug → +∞

To take into account the condition Stimulus → +∞
we replaced, for the first cycle, Eq. (11d) by dY 0

1
dt = 0 and

Eq. 11a by dC0
1

dt = C1
1k

1
1 − C0

1k
1
0 (see Additional file 6).

Those replacements amount to remove the inactive pro-
tein in cycle 1 because, when Stimulus → +∞, this
protein is either in its active state or in the complexes Cj

1.
About the second scenario, if Drug → +∞ the protein in
cycle 3 is all bound to the drug. Therefore from (11), we
remove the equations for cycle 3 and set Y j

3 = 0 on the
equation for the second cycle that is coupled to Y j

3.
With all this information, for each set of random param-

eters we solved the ODEs for the two scenarios, the initial
condition of the system being:

Y 0
1 = 0, C0

1 = Y1T/2, C1
1 = Y1T/2

Y 0
2 = Y2T

Y 0
3 = Y3T

We remark that for infinite stimulus, there is no Y 0
1

and then the initial condition is equally distributed in the
intermediate complex Cj

1.
After we solved the ODEs, we computed the following

dimensionless output variables:

�x1 = x1(dT → +∞, s → +∞) − x1(dT = 0, s → +∞),
�x2 = x2(dT → +∞, s → +∞) − x2(dT = 0, s → +∞),
�x3 = x3(dT = 0, s → +∞) − x3(dT = 0, s = 0).

These three dimensionless outputs are the second order
retroactivity, first order retroactivity, and forward activ-
ity, respectively. The numerical simulation also computes
slope, curvature, and fixed point using (19), (9), and (7),
respectively.

The likelihood of parameters for each signaling regime
In this study we consider two types of parameters,
either dimensional or dimensionless. The dimensional set
involves total concentrations of kinases and phosphatases,
Michaelis-Menten constants and catalytic rates for the
enzymatic reactions. The dimensionless set involves com-
binations of parameters that appear when solving the
dynamical equations for the steady-states, and also ratios
of parameters with the same units (ratios of rates, ratios of
concentrations, etc).
For each dimensionless parameters (denoted generically

by λ) and for each regime (jkl), we construct the following
probability using Bayes theorem:

P(jkl|λ) = P(λ|jkl)P(jkl)
P(λ)

(20)

with P(jkl|λ) being the probability of finding the sig-
naling regime (jkl), given some specific parameter value
λ, P(λ|jkl) the probability distribution of parameter λ

given a specific signaling regime, P(jkl) the probability
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to obtain each regime and P(λ) the probability distribu-
tion of parameter λ, whatever the regime. The last one
is obtained analytically as a sum of 2 (or 4) uniform
distributions.
Let us note that when (jkl) is fixed, the function P(jkl|λ)

is not a probability distribution over λ, but is called the
likelihood of λ, for a given regime (jkl), see [28]. One
main goal of our numerical simulations is to draw and to
compare the curves of normalized likelihoods, defined by:

Ljkl(λ) = P(jkl|λ)

maxλ P(jkl|λ)
(21)

The reason why we normalize by the the maximum is
that the maximum probability of each regimes can be
quite different (see Table 1 in Additional file 1, and Fig. 1b
where the probability of each regime P(jkl) is shown).
Therefore a rational criterion to characterize param-

eter values that promote a given signaling regime (jkl)
is to look for values which maximize the corresponding
likelihood function.
Then, considering signaling cascades with inhomo-

geneous parameters, simulations of the dose-response
curves and of the drug-response curves were done for
1.000.000 random sets of biochemical parameters. The
histograms of parameters were classified according to the
8 different regimes. Then, using Eq. 20, the likelihood
functions of the considered dimensionless parameters
were drawn on separate graphs for all possible regimes
(Fig. 4 and Additional file 2).
Let us remark that, despite the large number of sam-

plings, we observe that some signaling regimes are rare.
Therefore we computed error bars for all the likelihood
curves. For each specific signaling regime the error bars
were constructed on the parameter histogram by using a
binomial probability p of being in the i-th bin and 1 − p
of being in another bin. Then using error propagation for-
mula for Bayes relation (20) we obtained the error of each
parameter curve.
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