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Abstract

Background: Budding yeast, S. cerevisiae, has been used extensively as a model organism for studying cellular
processes in evolutionarily distant species, including humans. However, different human tissues, while inheriting a
similar genetic code, exhibit distinct anatomical and physiological properties. Specific biochemical processes and
associated biomolecules that differentiate various tissues are not completely understood, neither is the extent to
which a unicellular organism, such as yeast, can be used to model these processes within each tissue.

Results: We present a novel framework to systematically quantify the suitability of yeast as a model organism for
different human tissues. To this end, we develop a computational method for dissecting the global human
interactome into tissue-specific cellular networks. By individually aligning these networks with the yeast interactome,
we simultaneously partition the functional space of human genes, and their corresponding pathways, based on their
conservation both across species and among different tissues. Finally, we couple our framework with a novel statistical
model to assess the conservation of tissue-specific pathways and infer the overall similarity of each tissue with yeast.
We further study each of these subspaces in detail, and shed light on their unique biological roles in the human tissues.

Conclusions: Our framework provides a novel tool that can be used to assess the suitability of the yeast model for
studying tissue-specific physiology and pathophysiology in humans. Many complex disorders are driven by a
coupling of housekeeping (universally expressed in all tissues) and tissue-selective (expressed only in specific tissues)
dysregulated pathways. While tissue-selective genes are significantly associated with the onset and development of a
number of tissue-specific pathologies, we show that the human-specific subset has even higher association.
Consequently, they provide excellent candidates as drug targets for therapeutic interventions.
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Background
Budding yeast, S. cerevisiae, is widely used as an exper-
imental system, due to its ease of manipulation in both
haploid and diploid forms, and rapid growth compared
to animal models. Coupled with the continuous develop-
ment of new experimental methodologies for manipulat-
ing various aspects of its cellular machinery, it has served
as the primary model organism for molecular and systems
biology [1]. Motivated by the availability of its full genome
in 1996 as the first eukaryotic organism to be sequenced
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[2], an array of functional genomics tools emerged, includ-
ing a comprehensive collection of yeast deletion mutants
[3, 4], genome-wide over-expression libraries [5], and
green fluorescent protein (GFP)-tagged yeast strains [6, 7].
The maturity of yeast’s genetic andmolecular toolbox has,
in turn, positioned it as the primary platform for devel-
opment of many high-throughput technologies, including
transcriptome [8–10], proteome [11], and metabolome
[12, 13] screens. These -omic datasets, all originally devel-
oped in yeast, aim to capture dynamic snapshots of the
state of biomolecules during cellular activities. With the
advent of “systems modeling”, a diverse set of methods
have been devised to assay the interactions, both physical
and functional, among different active entities in the cell,
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including protein-protein [14–16], protein-DNA [17, 18],
and genetic [19–21] interactions. These interactions, also
referred to as the interactome, embody a complex network
of functional pathways that closely work together to mod-
ulate the cellularmachinery. Comparative analysis of these
pathways relies on network alignment methods, much the
same way as sequence matching and alignments are used
for individual genes and proteins. Network alignments
use both the homology of genes, as well as their under-
lying interactions, to project functional pathways across
different species [22–25]. Thesemethods have been previ-
ously applied to detection of ortholog proteins, projection
of functional pathways, and construction of phylogenetic
trees.
Yeast and humans share a significant fraction of their

functional pathways that control key aspects of eukaryotic
cell biology, including the cell cycle [26], metabolism [27],
programmed cell death [28, 29], protein folding, quality
control and degradation [30], vesicular transport [31], and
many key signaling pathways, such as mitogen-activated
protein kinase (MAPK) [32, 33], target of rapamycin
(TOR) [34], and insulin/IGF-I [35] signaling pathways. In
the majority of cases, yeast has been the model organ-
ism in which these pathways were originally identified
and studied. These conserved biochemical pathways drive
cellular growth, division, trafficking, stress-response, and
secretion, among others, all of which are known to be
associated with various human pathologies. This explains
the significant role for yeast as a model organism for
human disorders [36–38]. Yeast has contributed to our
understanding of cancers [39–41] and neurodegenera-
tive disorders [42–44]. Having both chronological aging
(amount of time cells survive in post-mitotic state) and
replicative aging (number of times a cell can divide before
senescence occurs), yeast is also used extensively as a
model organism in aging research. It has contributed to
the identification of, arguably, more human aging genes
than any other model organism [45].
Depending on the conservation of the underlying path-

ways, there are two main approaches to studying them
in yeast. It has been estimated that, out of 2,271 known
disease-associated genes, 526 genes (∼ 23 %) have a close
ortholog in the yeast genome, spanning one out of every
ten yeast genes [46]. For these orthologous pairs of
disease-associated genes, we can directly increase the
gene dosage of the endogenous yeast protein by using
overexpression plasmids, or decrease it, through either
gene knockout or knockdown experiments, in order to
study gain- or loss-of-function phenotypes, respectively.
A key challenge in phenotypic screens is that disrupting
genes, even when they have closemolecular functions, can
result in characteristically different organism-level pheno-
types. Phenologs, defined as phenotypes that are related
by the orthology of their associated genes, have been

proposed to address this specific problem [47]. A recent
example of such an approach is the successful identifica-
tion of a highly conserved regulatory complex implicated
in human leukemia [48]. This complex, named COMPASS
(Complex of Proteins Associated with Set1), was orig-
inally identified by studying protein interactions of the
yeast Set1 protein, which is the ortholog of the human
mixed-lineage leukemia (MLL) gene, and years later was
shown to be conserved from yeast to fruit flies to humans.
On the other hand, if the disease-associated gene(s) in
humans does not have close orthologs in yeast, heterolo-
gous expression of the human disease-gene in yeast, also
referred to as “humanized yeast”, can be used to uncover
conserved protein interactions and their context, to shed
light on the molecular mechanisms of disease develop-
ment and progression. For the majority of disease-genes
with known yeast orthologs, heterologous expression of
the mammalian gene is functional in yeast and can com-
pensate for the loss-of-function phenotype in yeast dele-
tion strains [1]. This approach has already been used to
construct humanized yeast model cells to study cancers
[39], apoptosis-related diseases [49], mitochondrial disor-
ders [50], and neurodegenerative diseases [43]. Perhaps
one of the more encouraging examples is the very recent
discovery of a new compound, N-aryl benzimidazole
(NAB), which strongly protects cells from α-synuclein
toxicity in the humanized yeast model of Parkinson’s dis-
ease [51]. In a follow-up study, they tested an analog
of the NAB compound in the induced pluripotent stem
(iPS) cells generated from the neuron samples of Parkin-
son’s patients with α-synuclein mutations. They observed
that the same compound can reverse the toxic effects of
α-synuclein aggregation in neuron cells [52]. Using this
combined phenotypic screening, instead of the traditional
target-based approach, they were not only able to discover
a key compound targeting similar conserved pathways in
yeast and humans, but also uncover the molecular net-
work that alleviates the toxic effects of α-synuclein. These
humanized yeast models have also been used to study
human genetic variations [53].
Various successful instances of target identification,

drug discovery, and disease network reconstruction using
humanized yeast models have established its role as a
model system for studying human disorders. When cou-
pled with more physiologically relevant model organisms
to cross-validate predictions, yeast can provide a sim-
ple yet powerful first-line tool for large-scale genetic
and chemical screening [41, 43]. However, as a unicellu-
lar model organism, yeast fails to capture organism-level
phenotypes that emerge from inter-cellular interactions.
Perhaps, more importantly, it is unclear how effectively
it can capture tissue-specific elements that make a tissue
uniquely susceptible to disease. All human tissues inherit
the same genetic code, but they exhibit unique functional
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and anatomical characteristics. Similar sets of molecular
perturbations can cause different tissue-specific patholo-
gies given the network context in which the perturbation
takes place. For example, disruption of energy metabolism
can contribute to the development of neurodegenerative
disorders, such as Alzheimer’s, in the nervous system,
while causing cardiomyopathies in muscle tissues [54].
These context-dependent phenotypes are driven by genes
that are specifically or preferentially expressed in one or
a set of biologically relevant tissue types, also known as
tissue-specific and tissue-selective genes, respectively. Dis-
ease genes, and their corresponding protein complexes,
have significant tendencies to selectively express in tis-
sues where defects cause pathology [55, 56]. How tissue-
selective pathways drive tissue-specific physiology and
pathophysiology is not completely understood; neither is
the extent to which we can use yeast as an effective model
organism to study these pathways.
We propose a quantitative framework to assess the

scope and limitations of yeast as a model organism for
studying human tissue-specific pathways. Our framework
is grounded in a novel statistical model for effectively
assessing the similarity of each tissue with yeast, consid-
ering both expressed genes and their underlying physical
interactions as a part of functional pathways. To under-
stand the organization of human tissues, we present a
computational approach for partitioning the functional
space of human proteins and their interactions based on
their conservation both across species and among differ-
ent tissues. Using this methodology, we identify a set of
core genes, defined as the subset of the most conserved
housekeeping genes between humans and yeast. These
core genes are not only responsible for many of the fun-
damental cellular processes, including translation, protein
targeting, ribosome biogenesis, and mRNA degradation,
but also show significant enrichment in terms of viral
infectious pathways. On the other hand, human-specific
housekeeping genes are primarily involved in cell-to-cell
communication and anatomical structure development,
with the exception of mitochondrial complex I, which
is also human-specific. Next, we identify comprehensive
sets of tissue-selective functions that contribute the most
to the computed overall similarity of each tissue with
yeast. These conserved, tissue-selective pathways provide
a comprehensive catalog for which yeast can be used as
an effective model organism. Conversely, human-specific,
tissue-selective genes show the highest correlation with
tissue-specific pathologies and their functional enrich-
ment resembles highly specific pathways that drive nor-
mal physiology of tissues.
Comparative analysis of yeast and human tissues to

construct conserved and non-conserved functional
tissue-specific networks can be used to elucidate molec-
ular/functional mechanisms underlying dysfunction.

Moreover, it sheds light on the suitability of the yeast
model for the specific tissue/pathology. In cases where
suitability of yeast can be established, through conser-
vation of tissue-specific pathways in yeast, it can serve
as an experimental model for further investigations of
new biomarkers, as well as pharmacological and genetic
interventions.

Results and discussion
In this section, we present our comparative framework for
investigating the scope and limitations of yeast as a model
organism for studying tissue-specific biology in humans.
Figure 1 illustrates the high-level summary of our study
design. We start by aligning each of the human tissue-
specific networks with the yeast interactome. We couple
the alignment module with a novel statistical model to
assess the significance of each alignment and use it to infer
the respective similarity/dissimilarity of human tissue-
specific networks with their corresponding counterparts
in yeast. Using a network of tissue-tissue similarities com-
puted using their transcriptional profile, we show that our
network alignment p-values are consistent with groupings
derived from transcriptional signatures. We use this net-
work of tissue similarities to identify four major groups
of tissues/cell-types. These groups; representing brain tis-
sues, blood cells, ganglion tissues, and testis-related tis-
sues; are further used to identify tissue-selective genes
that are active within each group compared to the rest of
tissues.
We partition both housekeeping and tissue-selective

subsets of human genes separately into the conserved and
human-specific subsections. We provide extensive vali-
dation for the selective genes with respect to blood cells
and brain tissues. Figure 2 illustrates the overall partition-
ing of the genes and their relative subsets. We provide an
in-depth analysis of each of these subsets, and show that
while conserved subsets provide the safe zone for which
yeast can be used as an ideal model organism, the human-
specific subset can shed light on the shadowed subspace
of the human interactome in yeast. This subset can pro-
vide future directions for constructing humanized yeast
models.

Aligning yeast interactome with human tissue-specific
networks
The global human interactome represents a static snap-
shot of potential physical interactions that can occur
between pairs of proteins. However, it does not provide
any information regarding the spatiotemporal character-
istics of the actual protein interactions. These interactions
have to be complemented with a dynamic context, such
as expression measurements, to help interpret cellular
rewiring under different conditions.
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Fig. 1Workflow summary. Main components of the analysis framework proposed in this paper. Each intermediate processing step is further
discussed in details in separate subsections

Bossi and Lehner [57] overlaid the mRNA expression
level of each transcript (transcriptome) in different human
tissues [58] on top of the global human interactome, inte-
grated from 21 PPI databases, and constructed a set of
79 reference tissue-specific networks. We adopt these
networks and align each one of them separately to the

yeast interactome that we constructed from the BioGRID
database.
In order to compare these human tissue-specific net-

works with the yeast interactome, considering both the
sequence similarity of proteins and the topology of
their interactions, we employ a recently proposed sparse

Fig. 2 Functional classification of human genes. A high-level summary of gene classification performed in this study
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network alignment method, based on the Belief Propa-
gation (BP) approach. This method is described in the
“Materials and methods” section [59].
Genes, and their corresponding proteins, do not func-

tion in isolation; they form a complex network of inter-
actions among coupled biochemical pathways in order
to perform their role(s) in modulating cellular machin-
ery. Moreover, each protein may be involved in multiple
pathways to perform a diverse set of functions. Using a
network alignment approach to project these pathways
across species allows us to not only consider their first-
order dynamics, through co-expression of homologous
protein pairs, but also the context in which they are
expressed.
To construct the state space of potential homologous

pairs, we align all protein sequences in human and
yeast and pre-filter hits with sequence similarity E-values
greater than 10. For genes with multiple protein iso-
forms we only store the most significant hit. Using these
sequence-level homologies, we construct a matrix L that
encodes pairwise sequence similarities between yeast and
human proteins. Entries in matrix L can be viewed as edge
weights for a bipartite graph connecting human genes on
one side, and the yeast genes, on the other side. We use
this matrix to restrict the search space of the BP network
alignment method.
Parameters α and β(= 1 − α) control the relative

weight of sequence similarity (scaled by α) as compared to
topological conservation (scaled by β) in the BP network
alignment. Using a set of preliminary simulations align-
ing the global human interactome with its tissue-specific
sub-networks, for which we have the true alignment, with
various choices of α in the range of 0.1–0.9, we identify
the choices of α = 1

6 and β = 5
6 to perform the best in our

experiments. We use the same set of parameters to align
each tissue-specific network with the yeast interactome,
as it provides a balanced contribution from sequence sim-
ilarities and the number of conserved edges. The final set
of all alignments is available for download as Additional
file 1

Investigating roles of housekeeping genes and their
conservation across species
Housekeeping genes comprise a subset of human genes
that are universally expressed across all tissues and
are responsible for maintaining core cellular functions
needed by all tissues, including translation, RNA pro-
cessing, intracellular transport, and energy metabolism
[60–62]. These genes are under stronger selective pres-
sure, compared to tissue-specific genes, and evolve more
slowly [63]. As such, we expect to see a higher level of
conservation among human housekeeping genes com-
pared with yeast genes. We refer to the most con-
served subset of housekeeping genes between humans

and yeast, computed using network alignment of tissues-
specific networks with the yeast network, as the core
genes.
We identify a gene as housekeeping if it is expressed

in all 79 tissues. We identify a total of 1,540 genes that
constitute the shared section of human tissue-specific
networks. These genes, while having similar set of inter-
actions among each other, are connected differently to the
set of tissue-selective genes.
Using the alignment partners of all housekeeping genes

in the yeast interactome, we construct an alignment con-
sistency table of size 1, 540 × 79, which summarizes
the network alignments over the shared subsection of
tissue-specific networks. Then, we use the majority vot-
ing method to classify housekeeping genes as core, which
are conserved in yeast, human-specific, which are consis-
tently unaligned across human tissues, and unclassified,
for which we do not have enough evidence to classify it as
either one of the former cases.
Network alignments are noisy and contain both false-

positive (defined as aligned pairs that are not functionally
related), as well as false-negatives (pairs of functional
orthologs that are missed in the alignment). These errors
can come from different sources, including gene expres-
sion data (node errors), interactome (edge errors), or
the alignment procedure (mapping errors). We propose a
method based on majority voting across different align-
ments to (partially) account for these errors. Given a set
of network alignments, we consider a pair of entities con-
sistently aligned (either matched or unmatched) if they
are consistent in at least 100 ∗ τ% of alignments in the
set. The parameter τ , called the consensus rate, deter-
mines the level of accepted disagreement among different
alignments. A higher value of consensus rate increases
the precision of the method at the cost of decreased
sensitivity. In order to select the optimal consensus rate
parameter, we tried values in range [0.5 − 1.0] with incre-
ments of 1

2 . We identified the parameter choice of τ = 0.9,
equivalent to 90 % agreement among aligned tissues, to per-
form the best in classifying human-specific and conserved
genes, while keeping the sets well-separated. Using this
approach, we were able to tri-partition 1,540 housekeep-
ing genes into 595 conserved, 441 human-specific, and
504 unclassified genes, respectively. The complete list of
these genes is available for download as Additional file 2.
In order to investigate the conserved sub-network of

core genes, we construct their alignment graph as the Kro-
necker product of the subgraph induced by core genes
in the human interactome and its corresponding aligned
subgraph in yeast. Conserved edges in this network cor-
respond to interologs, i.e., orthologous pairs of interact-
ing proteins between yeast and human [64]. The final
alignment graph of the core housekeeping genes is avail-
able for download as Additional file 3.
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Figure 3 shows the largest connected component of this
constructed alignment graph. We applied the MCODE
[65] network clustering algorithm on this graph to iden-
tify highly interconnected regions corresponding to puta-
tive protein complexes. We identified five main clusters,
which are color-coded on the alignment graph, and are
shown separately on the adjacent panels. Ribosome is the
largest, central cluster identified in the alignment graph
of core genes, and together with proteasome and spliceo-
some, constitutes the three most conserved complexes in
the alignment graph. This complex is heavily intercon-
nected to the eIFs, to modulate eukaryotic translation
initiation, as well as proteasome, which controls protein
degradation. Collectively, these complexes regulate pro-
tein turnover and maintain a balance between synthesis,
maturation, and degradation of cellular proteins.
In order to further analyze the functional roles of these

housekeeping genes, we use the g:Profiler [66] R package
to identify highly over-represented terms. Among func-
tional classes, we focus on the gene ontology (GO) biolog-
ical processes, excluding electronic annotations, KEGG
pathways, and CORUM protein complexes to provide a
diverse set of functional roles. We use the Benjamini-
Hochberg procedure to control for false-discovery rate
(FDR), with p-value threshold of α = 0.05, and elim-
inate all enriched terms with more than 500 genes to
prune overly generic terms. Using this procedure, we
identify enriched functional terms for both core and

human-specific subsets of housekeeping genes. The com-
plete list of enriched functions for different classes
of housekeeping genes is available for download as
Additional file 4.
We manually group the most significant terms (p-value ≤

10−10) in core genes, which results in five main functional
classes, namely ribosome biogenesis, translation, protein
targeting, RNA splicing, andmRNA surveillance. First, we
observe a one-to-one mapping between enriched terms
and identified putative complexes corresponding to trans-
lation initiation (p-value = 7.1 ∗ 10−17) and ribosome (p-
value = 5.97 ∗ 10−11). In addition, translation termination
and elongation are also enriched with decreasing levels of
significance. Moreover, these processes are tightly linked
to SRP-dependent co-translational protein targeting
(p-value= 2.7∗10−15). This, in turn, suggests protein syn-
thesis as one of the most conserved aspects of eukaryotic
cells. Next, we note that both mRNA splicing (p-value =
7.04 ∗ 10−10) and nonsense-mediated decay (p-value =
4.66∗10−16) are also enriched among the most significant
functional terms, which supports our earlier hypothesis
related to the role of splicesome in the alignment graph
of core genes. Finally, we find that the most significant
functional term, as well as a few other related terms, are
involved in viral infection, which suggests that (a subset
of the) core genes provides a viral gateway to mammalian
cells. This can be explained in light of two facts: i) viral
organisms rely on the host machinery for their key cellular

Fig. 3 Alignment graph of core human genes. Conserved edges in the alignment graph of core housekeeping genes, which correspond to the
“interologs,” i.e. orthologous pairs of interacting proteins between yeast and human. Five main protein clusters, identified as dense regions of
interaction in the alignment graph, are marked accordingly and annotated with their dominant functional annotation as follows: a Ribosome, b
Processing of capped intron-containing pre-mRNA, c Proteasome, d vATPase, e Cap-dependent translation initiation
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functions, and ii) housekeeping genes are more ancient
compared to tissue-selective genes, and core genes pro-
vide the most conserved subset of these housekeeping
genes. As such, these genes may contain more conserved
protein interaction domains and be structurally more
“familiar” as interacting partners for the viral proteins
and provide ideal candidates for predicting host-pathogen
protein interactions.
Next, we perform a similar procedure for the human-

specific housekeeping genes. This subset, unlike core
genes, is mostly enriched with terms related to anatomi-
cal structure development and proximal cell-to-cell com-
munication (paracrine signaling), with the exception of
complex I of the electron transport chain, which is the
strongest identified term. This NADH-quinone oxidore-
ductase is the largest of the five enzyme complexes in the
respiratory chain of mammalian cells. However, this com-
plex is not present in yeast cells and has been replaced
with a single subunit NADH dehydrogenase encoded by
gene NDI1. Impairment of complex I has been associated
with various human disorders, including Parkinson’s and
Huntington’s disease. Transfecting complex I-defective
cells with yeast NDI1 as a therapeutic agent has been pro-
posed as a successful approach to rescue complex I defects
[67, 68]. This technique, also known as NDI1 therapy,
opens up whole new ways in which yeast can contribute
to the research and development on human diseases: not
only yeast can be used as a model organism, but also can
provide candidates that can be used for gene therapy in
mammalian cells.
A key observation here is that the human-specific sub-

set of housekeeping genes is not only associated with
fewer functional terms, but is also less significantly asso-
ciated with these terms. This effect can be attributed to
two factors. First, we note that some of the genes pre-
dicted to be human-specific might be an artifact of the
method. For example, the belief propagation (BP) method
enforces sequence similarity as a necessary, but not suf-
ficient, condition for a pair of genes to be aligned, which
means that any human gene with no sequence similar-
ity to yeast genes will not be aligned, resulting in genes
being artificially classified as human-specific. Second, and
more importantly, a majority of functional annotations for
human genes are initially attributed in other species, spe-
cially yeast, and transferred across ortholog groups. Based
on our construction, human-specific genes are defined as
the subset of housekeeping genes with no orthology with
yeast. As such, it can be expected that these genes span
the shadowed subspace of the functional space of human
genes that is under-annotated.

Quantifying similarity of human tissues with yeast
Housekeeping genes are shared across all human tissues
and cell types. They provide a conserved set of functions

that are fundamental to cellular homeostasis. However,
these genes do not provide direct insight into how dif-
ferent tissues utilize these key functions to exhibit their
dynamic, tissue-specific characteristics. To assess the sim-
ilarity of each tissue with yeast, we propose a novel statis-
tical model, called tissue-specific random model (TRAM),
which takes into account the ubiquitous nature of house-
keeping genes and mimics the topological structure
of tissue-specific networks (please see “Materials and
methods” section for the details of the random model).
We use the alignment score of each tissue-yeast pair as

the objective function. To asses the significance of each
alignment score, we use aMonte Carlo simulationmethod
to sample from the underlying probability distribution of
alignment scores.
For each tissue-specific network, we sample kR =

10, 000 pseudo-random tissues of the same size from
TRAM, separately align them with the yeast interac-
tome, and compute the number of conserved edges and
sequence similarity of aligned protein pairs as alignment
statistics, in order to compute the empirical p-values.
For each network alignment, we compute a topological,
a homological (sequence-based), and a mixed (alignment
score) p-value. Additionally, we use cases in which align-
ment quality is significantly better in the original tis-
sue alignment, both in terms of sequence and topology,
to quantify an upper bound on the alignment p-values.
Conversely, cases in which both of these measures are
improved in the random samples can be used to define a
lower bound on the alignment p-value. The final table of
alignment p-values is available for download as Additional
file 5.
First, we note that all tissues with significant mixed

p-values also have both significant topological and homo-
logical (sequence-based) p-values. For a majority of tis-
sues with insignificant mixed p-values, we still observe
significant homological, but insignificant topological p-
values. We summarize the most and the least similar
tissues to yeast by applying a threshold of αl = αu = 10−2

to the p-value upper and lower bounds, respectively. Using
the p-value upper bound (�R) of 10−2, we identify a total
of 23 out of 79 tissues with high similarity to yeast. These
are listed in Table 1. Among them, blood cells consistently
show high significance, without even a single instance
from 10,000 samples having either the alignment weight
or the edge overlap of the random sample exceeding the
original alignment. Similarly, immune cell lines and male
reproductive tissues also show significant alignment p-
values, but with lower reliability scores. Conversely, there
are 19 out of 79 tissues that have δR > 10−2. These
are least similar to yeast. Among these tissues, listed in
Table 2, ganglion tissues consistently show the least sim-
ilarity to yeast. An interesting observation is that tissues
and cell types at either end of the table (either the most or
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Table 1 Tissues with the most significant similarity to the yeast interactome

Name Pval lower bound Overall pval Pval upper bound Reliability

Myeloid Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Monocytes < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Dentritic Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

NK Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

T-Helper Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Cytotoxic T-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

B-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Endothelial < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Hematopoietic Stem Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

MOLT-4 < 1.00e-04 < 1.00e-04 < 1.00e-04 1

B Lymphoblasts < 1.00e-04 < 1.00e-04 < 1.00e-04 1

HL-60 < 1.00e-04 < 1.00e-04 < 1.00e-04 1

K-562 < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Early Erythroid < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Bronchial Epithelial Cells < 1.00e-04 < 1.00e-04 0.0002 0.9998

Colorectal Adenocarcinoma < 1.00e-04 < 1.00e-04 0.0004 0.9996

Daudi < 1.00e-04 < 1.00e-04 0.0009 0.9991

Testis Seminiferous Tubule < 1.00e-04 < 1.00e-04 0.0012 0.9988

Smooth Muscle < 1.00e-04 < 1.00e-04 0.0016 0.9984

Blood (Whole) < 1.00e-04 < 1.00e-04 0.0053 0.9947

Thymus < 1.00e-04 0.0001 0.0062 0.9938

Testis Interstitial < 1.00e-04 0.0004 0.0086 0.9914

Table 2 Tissues with the least significant similarity to the yeast interactome

Name Pval lower bound Overall pval Pval upper bound Reliability

Trigeminal Ganglion 0.9947 0.9994 1 0.9947

Superior Cervical Ganglion 0.9847 0.9991 1 0.9847

Ciliary Ganglion 0.9407 0.9813 0.9964 0.9443

Atrioventricular Node 0.8746 0.9792 0.9921 0.8825

Skin 0.8355 0.9297 0.9809 0.8546

Heart 0.7934 0.9585 0.9815 0.8119

Appendix 0.7596 0.9371 0.973 0.7866

Dorsal Root Ganglion 0.7065 0.933 0.9717 0.7348

Skeletal Muscle 0.3994 0.5902 0.7866 0.6128

Uterus Corpus 0.233 0.7736 0.8769 0.3561

Lung 0.0771 0.3853 0.5544 0.5227

Pons 0.0674 0.5201 0.6983 0.3691

Salivary Gland 0.0639 0.3449 0.5173 0.5466

Liver 0.0600 0.6857 0.8519 0.2081

Ovary 0.0388 0.2735 0.4481 0.5907

Trachea 0.0259 0.2376 0.4146 0.6113

Globus Pallidus 0.0206 0.2471 0.4336 0.587

Cerebellum 0.0127 0.1950 0.3783 0.6344
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the least similar) usually have very high reliability scores,
that is both their topology and homology p-values are
consistent.

Identifying groups of coherent tissues
Next, we investigate the correlation between the simi-
larity of human tissues among each other and how it
relates to their corresponding alignment p-values with
yeast in order to better understand the transitivity of
this relationship. We expect that similar tissues should
exhibit consistent alignment p-values, resulting in groups
of homogenous tissues with coherent alignments scores.
To this end, we first construct a network of tissue-

tissue similarities (TTSN) using the global transcriptome
of human tissues from the GNF Gene Atlas, including
44,775 human transcripts covering both known, as well as
predicted and poorly characterized genes. For each pair of
tissues/ cell types, we compute a similarity score using the
Pearson correlation of their transcriptional signatures and
use the 90th percentile of similarity scores to select the
most similar pairs. We annotate each node in the TTSN
with its corresponding alignment p-value as a measure of
similarity with the yeast interactome. This meta-analysis
allows us to investigate how linear measurements of
gene/protein activity project to the space of protein inter-
actions, in order to re-wire the underlying interactome in
each human tissue.
Figure 4 presents the final network. In this network,

each node represents a human tissue/cell type and each
weighted edge illustrates the extent of overall transcrip-
tional similarity between pairs of tissues. This network is
filtered to include only tissue pairs with the highest over-
lap with each other. In order to assign color to each node,
we use z-score normalization on the log-transformed
alignment mixed p-values. Green and red nodes corre-
spond to the highly positive and highly negative range of
z-scores, which represent similar and dissimilar tissues to
yeast, respectively.
Preliminary analysis of this network indicates that the

alignment p-value of tissues highly correlates with their
overall transcriptional overlap. Furthermore, these high-
level interactions coincide with each other and fall within
distinct groups with consistent patterns. We manually
identified four such groups and separately annotated
them in the network. These groups correspond to brain
tissue, blood cells, ganglion tissues, and testis tissues.
Among these groups, blood cells and testis tissues exhibit
consistent similarity with yeast, whereas brain and gan-
glion tissues bear consistent dissimilarity.
The existence of homogenous group of tissues with

consistent similarity with yeast suggests an underlying
conserved machinery in these clusters. This raises the
question of what is consistently aligned within each tissue

group and how it relates to the computed alignment p-
values?We address this question, and relate it to the onset
of tissue-specific pathologies in the remaining subsec-
tions.

Dissecting tissue-selective genes with respect to their
conservation
In this subsection, we investigate the subset of non-
housekeeping genes in each homogenous group of human
tissues and partition them into sets of genes, and their cor-
responding pathways that are either conserved in yeast or
are human-specific. Next, we analyze how these pathways
contribute to the overall similarity/dissimilarity of human
tissues with yeast.
Figure 5 presents the probability density function for

the membership distribution of non-housekeeping genes
in different human tissues. The observed bi-modal dis-
tribution suggests that most non-housekeeping genes are
either expressed in a very few selected tissues or in the
majority of human tissues. We use this to partition the
set of expressed non-housekeeping genes, with the goal
of identifying genes that are selectively expressed in each
group of human tissues.
We start with all expressed non-housekeeping genes in

each tissue group, i.e., genes that are expressed in at
least one of the tissue members. Next, in order to iden-
tify the subset of expressed genes that are selectively
expressed in each group, we use the tissue-selectivity p-
value of each gene. In this formulation, a gene is identified
as selectively expressed if it is expressed in a signifi-
cantly higher number of tissues in the given group than
randomly selected tissue subsets of the same size (see
“Materials and methods” section for details). Figure 6
illustrates the distribution of tissue-selectivity p-values
of expressed genes with respect to four major groups in
Fig. 4. Each of these plots exhibit a bi-modal character-
istic similar to the membership distribution function in
Fig. 5. This can be explained by the fact that membership
distribution is a mixture distribution, with the underlying
components being the same distribution for the subset of
genes that are expressed in different tissue groups. We use
critical points of the p-value distributions to threshold for
tissue-selective genes. The motivation behind our choice
is that these points provide shifts in the underlying dis-
tribution, from tissue-selective to ubiquitous genes. Given
the bi-modal characteristics of these distributions, they all
have three critical points, the first of which we use as our
cutoff point. This provides highest precision for declared
tissue-selective genes, but lower recall than the other two
choices.
Having identified the subset of tissue-selective genes

with respect to each tissue group, we use the majority vot-
ing scheme to tri-partition these sets based on their align-
ment consistency with yeast. Similar to the procedure we
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Fig. 4 Projection of alignment p-values on the network of tissue-tissue similarities. Each node represents a human tissue and edges represent the
overall transcriptional similarity among them. Color intensity of nodes represents the similarity/dissimilarity of each tissue to yeast interactome, with
colors green and red corresponding to similar and dissimilar tissues, respectively. Group of similar tissues with coherent p-values are marked and
annotated in the network, accordingly

used to tri-partition housekeeping genes, we tried differ-
ent choices of consensus rate parameter from 50–100 %
with increments of 5 %. The percent of unclassified genes
decreases linearly with the consensus rate, while relative
portions of human-specific/conserved genes remain the
same. We chose 90 % for our final results, as it leaves
the least number of genes as unclassified, while keeping
human-specific and conserved genes well-separated. The
set of all tissue-specific genes is available for download as
Additional file 6.
Table 3 presents the number of expressed genes, selec-

tively expressed genes, and the percent of tissue-selective
genes that are conserved, human-specific, or unclassified

within each group of tissues. There is a similar relation-
ship between the ratio of conserved/human-specific genes
within each group of tissues and their alignment p-values,
suggesting that alignment p-values are highly correlated
with the conservation of tissue-selective genes and their
corresponding pathways. Figure 7 illustrates the relative
sizes of each subset of genes identified in this study.
Conserved genes and their corresponding pathways

comprise the functional subspace in which we can use
yeast as a suitable model organism to study tissue-specific
physiology and pathophysiology. On the other hand,
human-specific genes provide a complementary set that
can be used to construct tissue-engineered humanized
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Fig. 5Membership distribution of non-housekeeping genes in human tissues. The number of tissues in which non-housekeeping genes are
expressed in is smoothed using Gaussian kernel density. The observed bi-modal distribution suggests that most non-housekeeping genes are either
expressed in a few selected tissues or in the majority of human tissues

yeast models. They also provide promising candidates for
tissue-specific gene therapies in a similar fashion to NDI1
therapy, in cases where an alternative functional mecha-
nism can be found in yeast. To further investigate these
subsets, we focus on blood cells and brain tissues, which
illustrate the clearest separation between their tissue-
selective and conserved genes in their TSS distribution,
and subject them to more in depth functional analysis in
next subsections.

Elucidating functional roles of the brain and blood
selective genes
We use g:ProfileR on both human-specific and conserved
genes to identify their enriched functions. The complete
list of enriched functions is available for download as
Additional file 7. These two subsets share many common
terms, due to the underlying prior of both being sub-
sets of tissue-selective genes. To comparatively analyze
these functions and rank them based on their human-
specificity, we use the log of p-value ratios between
human-specific and conserved genes to filter terms that
are at least within 2-fold enrichment. We focus on GO
biological processes, KEGG pathways, and CORUM pro-
tein complexes and remove all genesets with more than
500 genes to filter for overly generic terms. Finally,
to group these terms together and provide a visual

representation of the functional space of genes, we use
EnrichmentMap (EM) [69], a recent Cytoscape [70] plug-
in, to construct a network (map) of the enriched terms.
We use the log ratio of p-values to color each node in the
graph. Figures 8 and 9 illustrate the final enrichment map
of unique human-specific and conserved blood-selective
and brain-selective functions, respectively.
Conserved blood-selective functions, shown in Fig. 8a,

are primarily enriched with terms related to DNA repli-
cation, cellular growth, and preparing cell for cell-cycle.
Among these terms, DNA replication-is tightly linked
to both DNA repair and telomere maintenance related
terms. Telomere maintenance, specially via telomerase
enzyme, is one of the cellular functions that is known to
be conserved in yeast, but only active in a selected subset
of differentiated human tissues and cell types, including
hematopoietic stem cells and male reproductive tissues
[71]. Functional terms involved in DNA conformation
changes, including condensin complex, as well as cell
cycle phase transition, specifically from G1 to S phases,
are two other groups of conserved functional terms that
are highly conserved from yeast to human. On the other
hand, human-specific blood-selective functions, shown in
Fig. 8b, are mainly involved in lymphocyte proliferation
and activation. Terms in these two groups are also tightly
related to each other and form a larger cluster together.
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Fig. 6 Distribution of tissue-selectivity p-values in different tissue groups. a Brain tissues, b Blood cells, c Ganglion tissues, d Testis tissues. Each plot
resembles the same bi-modal distribution as the gene-tissue membership density, with blood cells and brain tissues presenting the most clear
separation of tissue-selective genes. The critical points of each distribution function, where the derivative of pdf function is approximately zero, is
marked on each plot. These points provide optimal cutoff points for the tissue-selectivity p-values as they mark the points of shift in the underlying
distribution function

Table 3 Summary of tissue-selective gene partitioning CG: Conserved gene, HS: Human-specific gene

Cluster name # expressed genes # TS genes # CG (%) # HS (%) # unclassified (%)

Brain tissues 5936 891 273 (30.64 %) 401 (45.01 %) 217 (24.35 %)

Blood cells 6092 1093 460 (42.09 %) 385 (35.22 %) 248 (22.69 %)

Testis tissues 5358 328 119 (36.28 %) 126 (38.41 %) 83 (25.30 %)

Ganglion tissues 5278 274 76 (27.74 %) 136 (49.64 %) 62 (22.63 %)
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Fig. 7 Summary of gene classifications in this study. Housekeeping and tissue-selective genes, in four main groups of human tissues, are classified
into three main classes based on their conservation in yeast

In addition, cytokine production and T-cell mediated
cytotoxicity also exhibit human-specific, blood-selective
characteristics. This is partially expected, as these func-
tions are highly specialized immune-cell functions that are
evolved particularly in humans to ensure his survival in
less-favorable conditions.

Figure 9a shows the functional space of conserved brain-
selective functions. Many of these terms correspond to
various aspects of brain development, including olfactory
bulb, telencephalon, pallium, and cerebral cortex devel-
opment, as well as the regulatory circuit that controls
nervous system development. Considering the unicellular

Fig. 8 Enrichment map of unique blood-selective functions. Each node represents a functional term, and the thickness of edges corresponds to the
extent of overlap among terms. Conserved and human-specific set of functions is color-coded by green and red colors, respectively. Color intensity
of nodes represents the enrichment of terms. Related terms are marked and annotated in the enrichment map
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Fig. 9 Enrichment map of unique brain-selective functions. Each node represents a functional term, and the thickness of edges corresponds to the
extent of overlap among terms. Conserved and human-specific set of functions is color-coded by green and red colors, respectively. Color intensity
of nodes represents the enrichment of terms. Related terms are marked and annotated in the enrichment map

nature of yeast, the exact mechanisms in which orthologs
of these pathways modulate yeast cellular machinery is
less studied. An in-depth analysis to identify matching
phenologs can help us use yeast to study various dis-
orders related to brain development. Another functional
aspect that exhibits high conservation is the mTOR com-
plex 2. The target of rapamycin (TOR) signaling is a
highly conserved pathway, which forms two structurally
distinct protein complexes, mTORC1 and mTORC2. The
former complex has a central role in nutrient-sensing and
cell growth, and as such, has been used extensively to
study calorie restriction (CR) mediated lifespan exten-
sion. On the other hand, mTORC2 has been recently
proposed to modulate consolidation of long-term mem-
ory [72]. Cholesterol biosynthesis and transport is another
conserved functional aspect that differs significantly from
other human tissues. As the most cholesterol-rich organ
in the body, expression of genes corresponding to lipopro-
tein receptors and apolipoproteins is tightly regulated
among different brain cells and plays an important role
in normal brain development. Dysregulation of these
metabolic pathways is implicated in various neurological
disorders, such as Alzheimer’s disease [73]. Finally, micro-
tubular structure and tubulin polymerization also shows
significant conservation and is known to play a key role in
brain development [74]. These cytoskeletal proteins have
recently been associated with brain-specific pathologies,
including epilepsy [75].
Finally, we study human-specific brain functions, which

are shown in Fig. 9b. One of the key functional aspects
in this group is the semaphorin-plexin signaling path-
way. This pathway was initially characterized based on
its role in the anatomical structure maturation of the
brain, specifically via the repulsive axon guidance, but
later was found to be essential for morphogenesis of a

wide range of organ systems, including sensory organs and
bone development [76]. Another human-specific signal-
ing pathway identified in brain is the glutamate receptor
signaling pathway, which also cross-talks with circadian
entrainment, as well as neuron-neuron transmission. This
pathway plays a critical role in neural plasticity, neu-
ral development and neurodegeneration [77]. It has also
been associated with both chronic brain diseases, such
as schizophrenia, as well as neurodegenerative disorders,
such as Alzheimer’s disease [78].
Both conserved and human-specific genes play impor-

tant roles in tissue-specific pathologies. In addition, these
genes, which are enriched with regulatory and signaling
functions, cross-talk with housekeeping genes to control
cellular response to various factors. As such, a complete
picture of disease onset, development, and progression
can only be achieved from a systems point of view. From
this perspective, we study not only the genes (or their
states) that are frequently altered in disease, but also
the underlying tissue-specific and housekeeping pathways
in which they interact to exhibit the observed pheno-
type(s). In the next subsection, we further investigate
this hypothesis. We study the potential of different sub-
sets of the identified tissue-selective genes for predicting
tissue-specific pathologies.

Assessing the significance of tissue-specific pathologies
among conserved and human-specific tissue-selective
genes
To further study the predictive power of tissue-selective
genes for human pathologies, we use the genetic asso-
ciation database (GAD) disease annotations as our gold
standard [79]. This database collects gene-disease associ-
ations from genetic association studies. Additionally, each
disease has been assigned to one of the 19 different disease
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classes in GAD database. We use DAVID functional
annotation tool for disease enrichment analysis of tissue-
selective genes [80].
First, we seek to identify which disease classes are signif-

icantly enriched among each set of tissue-selective genes.
Table 4 shows the disease classes enriched in each group
of brain and blood selective genes. Conserved blood-
selective genes are predominantly enriched with cancers,
whereas human-specific blood-selective genes are mainly
associated with immune disorders. This can be linked to
our previous results indicating that conserved subset is
mainly involved in regulating growth, DNA replication,
and cell cycle, whereas human-specific genes are primar-
ily involved in lymphocyte proliferation and activation.
Conversely, brain-selective genes show higher similari-
ties in terms of disease classes that they can predict.
Both conserved and human-specific brain-selective genes
can predict psychiatric disorders, but human-specific
subset seems to be a more accurate predictor. On the
other hand, neurological disorders are only enriched in
human-specific subset of brain-selective genes, whereas
disorders classified as pharmacogenomic and chemde-
pendency show higher enrichment in conserved genes.
To summarize the specific disorders that are enriched

in each subset of brain-selective genes, we integrate all
identified diseases and rank them based on their enrich-
ment p-value, if it is only enriched in one set, or their
most significant p-value, if it is enriched in both sets.
Table 5 shows the top ten disease terms enriched in
either human-specific or conserved brain-selective genes.
In majority of cases, human-specific genes are more sig-
nificantly associated with brain-specific pathologies than
conserved genes. In addition, there are unique disorders,
such as schizophrenia, bi-polar disorder, and seizures, that
are only enriched among human-specific genes.
In conclusion, both conserved and human-specific

subsets of tissue-selective genes are significantly asso-
ciated with different human disorders. However, the
human-specific subset shows higher association with
tissue-specific pathologies. To this end, they guide us
to appropriate molecular constructs (gene insertions) in
yeast to explore molecular/functional mechanisms that
cause tissue-specific dysfunction. Such mechanisms can
be tested in humans, and if validated, yeast can serve as an

experimental model for further investigations of biomark-
ers and pharmacological and genetic interventions.

Conclusions
In this study, we demonstrated a novel methodology
for aligning tissue-specific interaction networks with the
yeast interactome and assess their statistical significance.
We demonstrated that these alignments can be used to
dissect tissue-specific networks into their core component
and tissue-specific components. Tissue specific compo-
nents were used for multiple purposes: (i) by showing
that a number of pathologies manifest themselves in dys-
regulated genes in the tissue-specific group, we motivate
exploration of these genes as particularly suitable candi-
dates as drug targets; (ii) by quantifying the alignment
of tissue-specific components with yeast, we quantify the
suitability of yeast as a model organism for studying cor-
responding disease/phenotype; (iii) in cases where there is
(statistically) insignificant alignment, it is still possible to
use yeast as a model organism, if the dysregulated path-
ways are aligned; and (iv) in cases where none of these
conditions hold, our alignments provide mechanisms for
assessing the feasibility of different molecular constructs
(gene insertions) for creating more appropriate, tissue-
specific, humanized yeast models.

Materials andmethods
Datasets
Protein-protein interaction (PPI) networks
We adopted human tissue-specific networks from Bossi
et al. [57]. They integrated protein-protein interactions
from 21 different databases to create the whole human
interactome consisting of 80,922 interactions among
10,229 proteins. Then, they extracted the set of expressed
genes in each tissue from GNF Gene Atlas and used it
to construct the tissue-specific networks, defined as the
vertex-induced subgraphs of the entire interactome with
respect to the nodes corresponding to the expressed genes
in each tissue.
Additionally, we obtained the yeast interactome from

the BioGRID [81] database, update 2011 [82], version
3.1.94, by extracting all physical interactions, excluding
interspecies and self interactions. This resulted in a total
of 130,483 (76,282 non-redundant) physical interactions

Table 4 Enriched disease classes of tissue-selective genes

Conserved genes Human-specific genes

Disease class p-value Disease class p-value

Blood cells Cancer 9.29 ∗ 10−4 Immune 1.19 ∗ 10−5

Brain tissues Psych 3.59 ∗ 10−4 Psych 5.70 ∗ 10−8

Chemdependency 2.60 ∗ 10−3 Neurological 2.97 ∗ 10−2

Pharmacogenomic 9.74 ∗ 10−2



Mohammadi et al. BMC Systems Biology  (2015) 9:96 Page 16 of 21

Table 5 Comparative analysis of brain-specific pathologies. Top
10 Enriched disorders were identified based on the GAD
annotations for conserved and human-specific genes in the brain

Disorder Conserved Human-specific
genes genes

Schizophrenia 0.008573 8.4905E-06

Autism 0.048288 0.00077448

Dementia 0.0014356 -

Schizophrenia; schizoaffective
disorder; bipolar disorder

- 0.0021433

Myocardial infarct; cholesterol,
HDL; triglycerides;
atherosclerosis, coronary;
macular degeneration; colorectal
cancer

0.0051617 -

Epilepsy 0.071562 0.0064716

Seizures - 0.020381

Bipolar disorder 0.048288 0.022016

Atention deficit disorder
conduct disorder oppositional
defiant disorder

0.032444 0.023865

among 5,799 functional elements in yeast (both RNA and
protein). Next, we downloaded the list of annotated CDS
entries from the Saccharomyces Genome Database (SGD)
[83] and restricted interactions to the set of pairs where
both endpoints represent a protein-coding sequence, i.e.,
protein-protein interactions. The final network consists of
71,905 interactions between 5,326 proteins in yeast and is
available for download as Additional file 8.

Protein sequence similarities between yeast and humans
We downloaded the protein sequences for yeast and
humans in FASTA format from Ensembl database, release
69, on Oct 2012. These datasets are based on the
GRCh37 and EF4 reference genomes, each of which con-
tain 101,075 and 6,692 protein sequences for H. Sapiens
and S. Cerevisiae, respectively. Each human gene in this
dataset has, on average, 4.49 gene products (proteins). We
identified and masked low-complexity regions in protein
sequences using pseg program [84]. The ssearch36 tool,
from FASTA [85] version 36, was then used to compute
the local sequence alignment of the protein pairs using the
Smith-Waterman algorithm [86]. We used this tool with
the BLOSUM50 scoring matrix to compute sequence sim-
ilarity of protein pairs in humans and yeast. All sequences
with E-values less than or equal to 10 are recorded as
possible matches, which results in a total of 664,769 hits
between yeast and human proteins. For genes with mul-
tiple protein isoforms, coming from alternatively spliced
variants of the same gene, we only record the most signifi-
cant hit. The final dataset contains 162,981 pairs of similar
protein-coding genes, and is available for download as
Additional file 9.

Sparse network alignment using belief propagation
Analogous to the sequence alignment problem, which
aims to discover conserved genomic regions across differ-
ent species, network alignment is motivated by the need
for extracting shared functional pathways that govern
cellular machinery in different organisms. The network
alignment problem in its abstract form can be formulated
as an optimization problem with the goal of identify-
ing an optimal mapping between the nodes of the input
networks, which maximizes both sequence similarity of
aligned proteins and conservation of their underlying
interactions. At the core of every alignment method are
two key components: i) a scoring function and ii) an effi-
cient search strategy to find the optimal alignment. The
scoring function is usually designed to favor the align-
ment of similar nodes, while simultaneously accounting
for the number of conserved interactions between the
pair of aligned nodes. Biologically speaking, this trans-
lates to identifying functional orthologs and interologs,
respectively.
Given a pair of biological networks, G = (VG , EG) and

H = (VH, EH), with nG = |VG| and nH = |VH | vertices,
respectively, we can represent the similarity of vertex pairs
between these two networks using a weighted bipartite
graphL = (VG∗VH, EL,w), wherew : EL → R is a weight
function defined over edges of L. We will denote mapping
between vertices vi ∈ VG and vi′ ∈ VH with (i, i′) and
ii′, interchangeably. Let us encode the edge conservations
using matrix S, where S(ii′, jj′) = 1, iff alignment of vi →
vi′ together with vj → vj′ will conserve an edge between
graphs G and H, and S(ii′, jj′) = 0, otherwise. Then, the
network alignment problem can be formally represented
using the following integer quadratic program:

max
x

(
αwTx + β

2
xTSx

)
(1)

Subject to:
{
Cx ≤ 1nG∗nH Matching constraints;
xii′ ∈ {0, 1}, Integer constraint.

Here,C andw are the incidencematrix and edge weights
of the graph L, respectively, whereas x is the match-
ing indicator vector. Vector w, which encodes the prior
knowledge of node-to-node similarity between the input
pair of networks, defines the search space of potential
orthologs and can be computed using sequence, structural,
or functional similarity of the proteins corresponding to
node pairs. In this study, we chose sequence similarity
of aligned protein sequences to assign edge weights in
the bipartite graph defined by L. When L is a complete
bipartite graph, i.e. each pair of vertices between G and
H represents a viable ortholog candidate, we will have
S = G ⊗ H. However, Bayati et al. [59] recently proposed
an efficient method, based on the message passing algo-
rithm, for cases where L is sparse, i.e., |EL| << nG ∗ nH,
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by restricting the search space to the subset of promis-
ing candidates that are provided by EL. We will use this
algorithm throughout this paper for solving the network
alignment problem.

Tissue-specific randommodel (TRAM) for generating
pseudo-random tissues
Let us denote the global human interactome by G =
(VG , EG), and each tissue-specific network by T =
(VT , ET ), respectively. Using this notation, we have nT =
|VT |, VT ⊂ VG , and ET ⊂ EG is the subset of all
edges from G that connect vertices in VT , i.e., T is the
vertex-induced subgraph of G under VT . This is the for-
mal description of the model used by Bossi et al. [57] to
construct human tissue-specific networks. Using this con-
struction model, we note that every tissue-specific net-
work inherits a shared core of interactions among house-
keeping genes that are universally expressed to maintain
basic cellular functions. Let us denote this subset of genes
by VU ⊂ VT , having nU = |VU | members, and the corre-
sponding induced core sub-graph using U = (VU , EU ).
In this setting, we propose a new random model to

explicitly mimic the topology of tissue-specific networks.
Formally, given each human tissue-specific network, we
seed an ensemble of pseudo-random tissues denoted by
RT = G(VR, ER), in which every instance shares two
main characteristics from the original network: (i) the
total number of vertices, (ii) the shared core of house-
keeping interactions. To summarize, our random graph
sampling scheme is as follows: first, we initialize the vertex
set VR using VU , which includes nU housekeeping genes.
Next, to ensure that the newly generated random instance
has the same number of vertices as the seed network, we
sample nT − nU vertices without replacement from the
remaining vertices, VG \VU . Finally, we construct the ran-
dom graph as the vertex induced sub-graph of the global
human interactome imposed by VR.
It can be noted that our randommodel not only provides

a pseudo-random network seeded on each tissue-specific
network, but also provides a node-to-node similarity score
between the newly generated graph and the yeast inter-
actome. This is a critical component of our framework,
which distinguishes it from other random graph mod-
els, such as Erdos-Renyi, network growth, or preferential
attachment. The only other effort to combine topology
with the node-to-node similarity score is proposed by
Sahraeian et al. [87], which fits a gamma distribution
over the the known pairs of ortholog/ non-orthologs pro-
teins in three species (according to their KEGG pathways),
and uses the fitted distribution to sample new sequence
similarity scores. However, this model does not bene-
fit from the structural knowledge of the tissue-specific
networks. Moreover, its sequence similarity generation
model loosely fits the observed data and does not provide

a fine-tuned model to assess the significance of tissue-
specific alignments. Our model, one the other hand, is
grounded in the same construction model as the original
tissue-specific networks, and provides enough selectivity
to distinguish similarity/dissimilarity of aligned networks
with yeast and to assign an empirical p-value to each
alignment.

Significance of network alignments
For each optimal alignment of a human tissue-specific
network with yeast, given by its indicator variable x, we
quantify the overall sequence similarity of aligned pro-
teins with the matching score of the alignment, ŵ = wTx,
and the total number of conserved edges by the align-
ment overlap, ô = 1

2x
TSx. These measures can be used

to rank different network alignments. However, without
a proper reference to compare with, it is almost impos-
sible to interpret these values in a statistical sense. To
address this issue, we sample an ensemble of kR random
networks from the tissue-specific random model (TRAM),
independently align each instance to the yeast interac-
tome, and empirically compute a topological, a homologi-
cal (sequence-based), and a mixed alignment p-value for
each alignment using Monte-Carlo simulation.
Let ŵR and ôR be the random vectors representing the

weight and overlap of aligning random tissues with yeast,
respectively. First, we define individual p-values for the
conservation of network topology and sequence homol-
ogy. Let us denote by k(ŵ)

P and k(ô)
P the number of random

samples that have weight and overlap greater than or
equal to the original alignment, respectively. Then, we can
define the following p-values:

p − valhomolgy = k(ŵ)
P
kR

(2)

p − valtopology = k(ô)
P
kR

(3)

Before we define the mixed p-value, we define upper
and lower bounds on the p-value. These bounds are inde-
pendent of the mixing parameter. For cases where both
ô ≤ ôR(i) and ŵ ≤ ŵR(i), for 1 ≤ i ≤ kR, we can
report that the random alignment is at least as good as
the original alignment. Conversely, if both ôR(i) < ô
and ŵR(i) < ŵ, we can assert that the original align-
ment outperforms the random alignment. Let us denote
the number of such cases by kP and kN , respectively. Using
this formulation, we can compute the following bounds on
the mixed p-value of the alignment:

δR = kP
kR

≤ alignment p−value ≤ 1− kN
kR

= �R (4)

Please note that �R and δR are not p-values them-
selves, rather, they represent α-independent bounds on
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the mixed p-values. We can use these bounds to estimate
the similarity of each tissue-specific network to the yeast
interactome. Tissues for which the upper-bounds on the
alignment p-value are smaller than a given threshold αu
are considered similar to yeast, while tissues with lower-
bounds larger than αl are considered dissimilar. For cases
where the following conditions hold: ôR(i) < ô and ŵ <

ŵR(i), or ô < ôR(i) and ŵR(i) < ŵ, the p-values are
α-dependent. To quantify this ambiguity, we define the
reliability of a p-value as kN+kP

kR . When there is no ambigu-
ity, that is, both the homological and topological p-values
of each case are either concurrently significant or concur-
rently insignificant, the reliability score is one. Otherwise,
in cases where one of them is significant while the other
is not, the reliability score decreases, accordingly. Finally,
we define an unadjusted mixed p-value similar to the con-
vex combination used in network alignment. Let us define
a new random variable ˆowR = α ∗ ôR + β ∗ ŵR. Using
this notation, we define the mixed p-value as:

p − value = Prob(α ∗ ô + β ∗ ŵ ≤ ˆowR) (5)

Differential expression of genes with respect to a group of
tissues
Given a homogenous group of human tissues/cell types,
we first identify all expressed genes in the group, i.e., all
non-housekeeping genes that are expressed in at least one
of the tissue members. Next, in order to identify the sub-
set of expressed genes that are selectively expressed, we
use a hypergeometric random model. A gene is identified
as selectively expressed if it is expressed in significantly
higher number of tissues in the given group than ran-
domly selected tissue subsets of the same size. Let N and
n denote the total number of tissues in this study and the
subset of tissues in the given group, respectively. More-
over, let us represent by cN the number of all tissues in
which a given gene is expressed, whereas cn similarly rep-
resents the number of tissues in the given group that the
gene is expressed. Finally, let the random variable X be
the number of tissues in which the gene is expressed, if
we randomly select subsets of tissues of similar size. Using
this formulation, we can define the tissue-selectivity p-
value of each expressed gene in the given group as follows:

p-value(X = cn) = Prob(cn ≤ X)

= HGT(cn|N , n, cN )

=
min(cN ,n)∑

x=cn

C(cN , x)C(N − cN , n − x)
C(N , n)

(6)

In order to partition genes into selective and ubiquitous
genesets, we derive the tissue-selectivity p-value distribu-
tion of all expressed non-housekeeping genes in the given

group. We use the Gaussian kernel to smooth this distri-
bution and then find the critical points of the smoothed
density function to threshold for tissue-selective genes.
The motivation behind our choice is that these points
provide shifts in the underlying distribution, from tissue-
selective to ubiquitous genes. Given the bi-modal charac-
teristic of the distribution, it has three expected critical
points. We use the first of these points as our cut-
off point. This provides highest precision for declared
tissue-selective genes, but lower recall than the other two
choices.

Conservation of genesets based on themajority voting rule
Given a set of genes that are selectively expressed in a
homogenous group of tissues/cell types, we are interested
in tri-partitioning them into either conserved, human-
specific, or unclassified genes. Conserved genes are the
subset of tissue-selective genes that are consistently
aligned in majority of aligned tissues in the given group.
Conversely, human-specific genes are the subset of tissue-
selective genes that are consistently unaligned in majority
of tissues in the given group. Finally, unclassified genes are
the subset of tissue-selective genes for which we do not
have enough evidence to classify them as either conserved
or human-specific.
The key data-structure we use to tri-partition genesets

is the alignment consistency table. Let C be a group of
homogenous tissues with n = |C|. Furthermore, let gTSC
represent the set of tissue-selective genes with respect to
C, such that kTSC = |gTSC |. The alignment consistency table
is a table of size kTSC × n, represented by T TS

C , in which
T TS
C (i, j) is the aligned yeast partner of ith tissue selective

gene under the network alignment of jth tissue in C, or ′−′
(gap), if it is unaligned. We find the most common part-
ner for each tissue-selective gene and use a consensus rate,
represented by τ , to summarize each rows of the align-
ment consistency table. If a gene is consistently aligned to
the same yeast partner in at least τ ∗ n tissues in C, we
declare it as conserved. Similarly, if it is unaligned in at
least τ ∗ n tissues in C, we classify it as human-specific.
If neither one of these conditions hold, we report it as
unclassified.
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