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Abstract

Background: High-throughput omics technologies have enabled the measurement of many genes or metabolites
simultaneously. The resulting high dimensional experimental data poses significant challenges to transcriptomics
and metabolomics data analysis methods, which may lead to spurious instead of biologically relevant results. One
strategy to improve the results is the incorporation of prior biological knowledge in the analysis. This strategy is
used to reduce the solution space and/or to focus the analysis on biological meaningful regions. In this article, we
review a selection of these methods used in transcriptomics and metabolomics. We combine the reviewed
methods in three groups based on the underlying mathematical model: exploratory methods, supervised methods
and estimation of the covariance matrix. We discuss which prior knowledge has been used, how it is incorporated
and how it modifies the mathematical properties of the underlying methods.

Background
High-throughput technologies such as DNA microarrays
in transcriptomics and mass spectrometry in metabolo-
mics produce large amounts of experimental data,
where each sample is characterized by the expression
levels of thousands of genes, or concentration levels of
hundreds to thousands of metabolites respectively. This
high number of variables gives a unique chance to catch
a broad range of biological processes but, at the same
time, poses significant challenges to statistical methods
of analysis. First of all, traditional statistical methods
highlight relationships among variables based only on
mathematical criteria (e.g. maximizing variance or corre-
lation among variables) and thereby do not always dis-
tinguish between correlations from biological origin and
chance correlations that may arise because of the high
dimensionality of the data and measurement noise.

Secondly, biological differences of the subjects in the
study produce variations in gene expression values and
metabolite concentrations in experiments. Very often
such biological variation is not of primary interest and
not under control of the researcher. Therefore, a chal-
lenge of statistical methods in transcriptomics and meta-
bolomics is to distinguish between the different variation
sources.
Recently, new methods have appeared that use prior

knowledge of the biological system to guide the statistical
analysis to enhance discovery of new biology while redu-
cing the detection of spurious relationships. In addition,
prior knowledge may be used to check consistency of the
available knowledge and experimental data to fill in possi-
ble gaps or add more detail. We focus our review on
approaches that incorporate prior knowledge about the
relationship between the genes or between metabolites to
achieve an optimal balance between mathematical criteria
and known biology. The relationships among variables
(genes or metabolites) can be determined, for example,
from public databases that contain results of previous
experimental data analysis. For example, the KEGG [1]
database contains information about metabolic pathways,
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GO [2] contains annotation of gene products, the TRANS-
FAC [3] database contains information about transcription
factors, their binding sites, and target genes. We are speci-
fically interested in how each method manages the balance
between the discovery of new biology and, using prior
knowledge, forcing the results towards existing biology.
In this review, we focus on high dimensional super-

vised and unsupervised data analysis methods that
include prior knowledge into the mathematical model
used for the analysis of metabolomics or transcriptomics
data. Methods for genomics and proteomics also have
been developed (see for example [4,5]) but they are out
of the scope of our review. To the best of our knowl-
edge, our review is the first that provides a comprehen-
sive overview of strategies using prior biological
knowledge in metabolomics and transcriptomics data
analysis. In the remainder of this text we will refer to
metabolomics and transcriptomics data as ‘omics’ data.
To structure this review, we classified the reviewed

methods into three groups, based on the mathematical
approach and whether the method is unsupervised or
supervised. We distinguish three groups of mathematical
approaches. The first group comprises component mod-
els that reduce the dimensionality of the data by con-
structing latent variables from the observed genes or
metabolites. The second group comprises cluster models
that use similarity measures to group related genes or
metabolites, and the third group comprises covariance
methods that primarily aim to estimate variances/corre-
lations among the genes or metabolites. We wittingly
have not grouped the methods based on the used type
of prior knowledge. As can be seen from our review, the
same type of prior knowledge is utilized by a range of
mathematical methods. In section Exploratory methods
we discuss unsupervised methods (component based
models and clustering methods). These methods explore
data and describe the major drivers underlying the
observed data structure. In section Supervised classifica-
tion methods we discuss supervised methods for finding
a classification function that predicts class labels. In sec-
tion Covariance matrices we discuss methods that esti-
mate the covariance matrix. For each section we provide
additional figures [see Additional file 1].

Two phases of the analysis of high dimensional data
The term model has many interpretations in the bioin-
formatics literature. In the context of this review we
define a ‘model’ as a statistical or mathematical repre-
sentation of omics data. Each model has specific esti-
mated parameters, for example, principal components in
component models or coefficients in a regression model.
Omics data is written as a two-way matrix X with I
rows representing genes or metabolites, and J columns
representing samples (e.g. subjects, tissues, treatments,

diseases). J is usually much smaller than I. In this review
we will focus on data analysis methods that handle two-
way data. To facilitate the discussion and comparison of
data analysis methods that use prior knowledge, we con-
sider two phases in the analysis of omics data:

1. Definition of a model and estimation of the model
parameters.
2. Interpretation of the model parameters in terms
of biological knowledge.

Prior biological knowledge can be incorporated in
each of these two phases. In the second phase the prior
information is used to facilitate or even enable interpre-
tation of the data analysis result. Examples of such
methods are gene set enrichment analysis [6] and meta-
bolite set enrichment analysis methods [7]. The enrich-
ment methods have been extensively reviewed by others
[8,9]. In this paper we focus on the first phase in which
the model parameters are estimated.
The inclusion of prior knowledge in data analysis

implies that we have to weight the importance of the
data against the importance of the biological knowledge.
This is visualized by the slider in Figure 1. The methods
discussed in this review implicitly or explicitly (using a
weight factor) deal with this balance. Inclusion of prior
knowledge aims to emphasize the known relationships
between the genes or metabolites while eliminating
spurious variation among these variables. However, it
may also limit the possibility to make new discoveries if
we put too much emphasis on the already known biol-
ogy. The main challenge is to find an optimal position
for the slider such that new discoveries can be made
from the data that are in agreement with current

Figure 1 A general scheme of data analysis methods. f(data) is
a function that does not include prior knowledge. f(data, prior
knowledge) is a function that includes prior knowledge. “Answer
with prior knowledge” gives a better predictive model, is easier
interpretable and/or more reproducible than “answer” without prior
knowledge. The slider controls the strength of the influence of prior
knowledge on the result.
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biological knowledge. The methods reviewed in this
paper follow different strategies to set this balance.

Exploratory methods
Component models
Component models are used in omics data analysis to
extract and represent the most informative changes in the
experimental data among different conditions or samples.
Recently, new approaches have appeared that use prior
information such as regulation networks, protein net-
works, and metabolic networks to highlight the most valu-
able changes that are related to the question of the study.
The basic equation of component models is

X = AFT + E (1)

where X is an I by J data matrix that consists of I variables
(genes or metabolites) and J samples. Matrix A contains the
linear components (summarizers) of the data X. Matrix F
contains the weights of these components in each sample.
The residual matrix E contains the part of the data not
explained by the model. Matrices A and FT are estimated to
maximize the fraction of data variation that is explained by
the components. The combination of columns in A and FT

are called principal components and are required to be
orthogonal (Principal Component Analysis) or independent
(Independent Component Analysis). In PCA matrices A
and FT are estimated in a least squares sense to minimize
the sum of squares of the residuals (Equation 2).

min
A,F

[||X − AFT ||2] (2)

The prior information is translated into the mathemati-
cal model by applying various restrictions on the elements
of A and FT. The restrictions are a predefined range of
certain elements in A and FT or dependencies of some
elements on other elements in A or FT. Because of the
restrictions, the new principal components are no longer
forced to be orthogonal and may deviate from their stan-
dard requirements to reflect better the underlying biologi-
cal processes. We define two concepts of incorporation of
prior knowledge in a component model.
The first concept is based on a relatively simple idea.

Metabolites or genes are split into two groups with the
ones on which the focus will be in one group (X2) and
the remainder in another (X1). The analysis also shows
metabolites or genes from the first group, which follow
profile patterns of the second group. Van den Berg et
al. [10] adjusted consensus PCA to implement the con-
cept. Equation 3 and Figure 2 (Additional file 1) demon-
strate the method.

[
w1 · X1

w1 · X1

]
=

[
A1

A2

]
FT +

[
E1
E2

]
(3)

where X1 and X2 are two parts of X. X2 contains a small
group of metabolites that are thought to be important for
the problem under the study. Initially, weights w1 and w2

were used to compensate the small size of matrix X2. This
weights were set to the square root of the sum of squares
of the corresponding matrix. Consequently, the total varia-
tion in each matrix became “1” and equally important for
explaining variation in the data. We suggest the weights
may also be used as the slider (Figure 1) to put more
emphasis on known relationships among metabolites in
X2. The method was applied on experimental data from a
phenylalanine overproducing strain and wild type strain of
E. coli that contained measurements of metabolites under
28 conditions. The authors selected the phenylalanine bio-
synthesis pathway for the subset of genes in the matrix X2

and showed that the method was able to successfully iden-
tify large common effects between the metabolome in the
matrix X1 and the specific metabolites in the matrix X2.
The second concept to include prior knowledge predefines
variations, which must be described. For example, Net-
work Component Analysis (NCA) of Liao and colleagues
is forced to catch variation within a gene regulatory net-
work [11]. For that the method specifically searches for
changes in expression level of genes that are known to be
regulated by a transcription factor. Variation caught by the
method is interpreted as the activity of the transcription
factor in the network during the experiment. Therefore,
the method uses known qualitative information about reg-
ulatory networks topology to generate quantitative net-
work information on the connection strength between
genes and transcription factors while decomposing experi-
mental data. The formula of the method is

X = ATF · FT + E (4)

where each column in ATF is forced to represent the
effect on genes of a single transcription factor by putting
zeros representing that the specific gene is not regulated
by that specific transcription factor (Figure 3 in Additional
file 1). The further estimation of the matrix ATF is made
only for elements that are not restricted to be 0. Thus only
the genes that are regulated by the corresponding tran-
scription factor will have parameters in ATF estimated and
the values in the matrix FT are considered as the activity
of that transcription factor in each sample.
The authors analyzed experimental data of a cell cycle

regulation in S. cerevisiae and focused the analysis on 11
transcription factors that are known as regulators in the
cell-cycle. NCA successfully revealed the role of each
transcription factor; in contrast, the gene expression
ratios of the transcription factors do not suggest their
important role.
Later it was shown that NCA suffered from many false

connections between genes and transcription factors in
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the prior knowledge. Therefore a realization of the slider
that would control inputs of biological and mathemati-
cal constraints was needed. Yu and Li proposed to use
the high-confident part of the prior knowledge to build
a model [12]. The model is finalized later through itera-
tions between an estimation of components on experi-
mental data and an estimation on the low-confident
part of the prior knowledge. The authors argued that
the iteration process allowed to reduce the influence of
false connections on the model. As proof the authors
report two regulatory networks under different growth
conditions for S. cerevisiae. For the same purpose, Tran
et al. suggested to combine stepwise regression and
NCA in an iterative approach [13]. The authors argue
that their algorithm overcomes the problems of NCA in
the analysis of large networks where multiple transcrip-
tion factors regulate a single gene. Moreover, the
authors argued that NCA could not be used in the case
when the number of experiments was very small and
their method overcame this limitation. The method was
demonstrated on a network that contains 70 transcrip-
tion factors, 778 genes, and 1423 edges between the
transcription factors and genes.
Grey Component Analysis (GCA) is the first imple-

mentation of the slider that actually allows to choose
how much trust is given to the prior knowledge [14].
The topology of gene regulatory networks is used in the
same way as in NCA. But how strict the analysis has to
follow the prior knowledge is defined by a soft penalty
approach. The penalty approach allows using the GCA
method for two purposes. If the penalty is strict the
decomposition is biased towards prior knowledge. If the
penalty is soft the method analyzes the consistency of
the data and the prior knowledge. By varying l it is
possible to show how well the data follows the prior
knowledge and where it does not follow it anymore.
To implement the idea, GCA minimizes the combined

sum of squares of the model residual and the penalty

min
A,F

[||X − AFT ||2 + λ||W ◦ (A − Atrue)2||];λ ≥ 0 (5)

where matrix A is defined according to the given prior
knowledge, but the zeros applied to the matrix A in NCA
method are allowed to be small values in GCA. The
authors argued that in noisy data such as omics data,
enforcing real zeros might lead to the mis-estimation of
the nonzero values. The added part λ||W ◦ (A − Atrue)2|| is
the penalty. Matrix Atrue is the structure as applied in
NCA, A is the estimated matrix and W is an indicator
matrix which assures that the penalty is only active on the
positions in A where Atrue has zeros. The parameter l
determines how much emphasis the method puts to fit the
data and how much to follow the prior knowledge in Atrue.

Above we discussed various component models. Table 1
in Additional file 2 summarizes our overview.
Cluster models
Cluster analysis aims to construct groups of genes or meta-
bolites that share a biological factor such as a common
function or co-regulation by transcription factors. Tradi-
tional cluster algorithms base their similarity score only on
measured data (gene expression values or metabolite con-
centrations) and discard known relationships between
genes or metabolites. This may, for example, result in clus-
ters of genes/metabolites that exhibit similar profiles across
samples but are not necessarily co-regulated, do not have
similar functions, or do not participate in the same path-
way. Here we describe three concepts of including prior
knowledge into clustering:

1. Adjusting the distance measure by including prior
knowledge.
2. Improving K-means clustering for variables with
similar profiles within one regulatory pathway.
3. Extending model-based clustering by increasing
the probability of grouping variables with similar
prior knowledge.

These concepts are discussed in more detail below.
The first concept adjusts the clustering distance measure

between variables. A distance between variables based on
prior knowledge is calculated and added to the data based
distance. Based on the combined score the hierarchical
tree will cluster variables with both similar experimental
profiles and prior knowledge. Figure 4 in Additional file 1
shows the first concept where similarity between GO
annotation is used as the prior knowledge distance mea-
sure. The slide ruler naturally fits the concept.
The first implementation of the concept was done in a

publication of Cheng et al. [15]. To achieve the goal the
method uses similarity in the GO annotation between
genes. GO has a hierarchical structure where more general
functional terms are located closer to the root, while more
specific terms are located closer to leafs. The authors
assumed that the first common ancestor of two terms that
is closer to leafs reflects a larger functional similarity of
the corresponding genes. The formula of the method is

dii′ = sii′ + gii′ (6)

where sii ’ is the gene expression similarity score
between gene i and i’, calculated as Euclidian distance
between the expression profiles of gene i and gene i’,
and gii’ is the annotation similarity between GO terms
of two genes that is based on the GO terms common
ancestor. The authors showed that a strong correlation
between biological functions and expression profiles led
to a cluster. Genes that had close expression patterns
but did not have similar annotation were separated.
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R. Kustra and A. Zagdanski improved this approach by
including a weight factor that balances the contribution of
profile distances and the prior knowledge [16]. The overall
distance between two genes i and i’ was defined as

dii′ = λsii′ + (1 − λ)gii′ ; 0 ≤ λ ≤ 1 (7)

where the gene expression similarity sii’ is given by the
Pearson’s correlation between gene profiles; gii’ is the GO
annotation similarity; l represents the slider. This method
also utilizes the hierarchical structure of the GO tree, but
in contrast to the method of Cheng who used the com-
mon ancestor, this method uses the Information Content
of each node. The authors suggested that the GO similar-
ity measure would diminish spurious perturbations in
gene expression levels and would lead to more meaningful
clusters by focusing the analysis on the known biology. To
study the influence of prior knowledge the authors clus-
tered 3224 yeast genes from 424 microarray experiments.
Specifically, the authors proposed to use a protein-protein
interaction based measure to asses the biological relevance
of clusters for l = 0.0, 0.25, 0.5, 0.75, 1.0. However, since
the protein-protein interactions also reflect functional
relationships between the genes, it can not be used as an
unbiased measure to evaluate the incorporation of GO
annotations as prior knowledge. As expected the protein-
interaction score increased for smaller l, i.e., stronger
influence of the GO annotations. Consequently, it was not
possible to suggest a good value of l. An additional stage
of validation conducted by a biologist or a new measure of
biological relevance of clusters were required. Whereas
the cluster methods we have discussed so far use GO
information, Hanish et al. incorporated metrics on meta-
bolic and regulatory pathways from KEGG into the dis-
tance function [17]. The distance function assigns small
values to pairs of genes, which are close in a network and
show similar expression patterns. Genes which are far
apart in the network and are not co-regulated or even
oppositely regulated are assigned large values. The dis-
tance function emphasizes genes that are co-regulated
within pathways.
The proposed model for the distance between two

genes is

dii′ = 1 − 0.5 ∗ (gii′ + sii′) (8)

where sii’ is a Pearson correlation based measure and gii’ is
a measure based on the ‘minimal degree’ of a path between
two genes in a metabolic pathway. Both measurements
were adapted in order to combine the Pearson correlation
and the minimal degree to one joint function that would
emphasize genes with a high expression profile correlation
and which are tightly linked within a pathway. Compared
to a distance measure based on either the correlation or
minimal degree, this compound distance compensates for

biased results due to, for example, very high profile correla-
tions or missing pieces of prior knowledge. The degree of
path is calculated as the sum of incident edges of all nodes
between two genes. Note that the authors took a minimal
path without hubs, because the hubs are considered to be
unspecific or ubiquitous molecules and thus unimportant
or misleading for the method. The method does not imple-
ment the slide ruler with an explicit weight factor but gives
an equal importance for both expression data and prior
knowledge.
In hierarchical clustering, the final clusters are defined

by horizontally cutting the branches of the tree at a cer-
tain level. This may also be a non-trivial process. Dotan-
Cohen and co-authors proposed a tree snipping algo-
rithm that construct clusters by cutting selected edges
at different levels [18]. This method uses GO terms to
annotate each node and provides a novel partitioning of
the cluster tree in order to have genes with similar GO
annotation in one or closely related clusters. More spe-
cifically, during the procedure a GO label list of each
leaf of a subtree is compared to the annotation of the
corresponding cluster. A leaf with the most dissimilar
list of labels will be excluded from the subtree while
nodes from close subtrees and similar labels will be
included. In the first step, the method builds the hier-
archical tree without using the prior knowledge. Subse-
quently, the method changes the original grouping by
incorporating the prior knowledge into the partitioning
function. We note that the authors assumed any types
of labels and not specifically GO annotation. For exam-
ple, the transcription factors known to regulate genes
can be used. For that reason the tree snipping algorithm
does not utilize the hierarchical graph information that
is specific for GO. Considering an improvement of
other methods by including the graph information (as in
[15]) we expect that it might give a better result for the
tree partitioning algorithm as well. We also note that
the method can be directly used in the field of metabo-
lomics where the partitioning may be improved by
metabolic networks, or biological annotation.
The second concept of incorporation of prior knowl-

edge in clustering does not explicitly use prior knowledge
as a similarity measure. Instead, in a first step genes are
grouped according to prior knowledge and, subsequently,
similarity among gene expression profiles within a single
group is used to improve the clustering. Following this
concept, Tseng et al. proposed a clustering method PW-
Kmeans (Penalized and Weighted K-means) that extends
the K-means method by incorporating GO functional
annotations [19] (Figure 5 in Additional file 1). The
method groups genes according to known functional
annotation from GO and then assigns a weight to each
gene. The weight reflects how well the gene expression
profile conforms to expression profiles of all others genes
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in its a priori defined group. High expression profile
similarity among genes with common functional annota-
tion results in small values of their weights and conse-
quently in tight clusters. In addition, the method
introduces a noise cluster that contains all scattered
genes, which do not follow expression profiles of other
genes with similar GO annotation.
The method adapts the loss function in the following

way

W(C; k;λ) =
K∑
k=1

∑
xi∈Ck

w(xi; L)d(xi,Ck) + λ |S| (9)

where K is the number of clusters; d(xi, Ck) is the dis-
tance between gene i expression profile xi and the mean
of the cluster Ck; w(xi; L) is the weight that codes the
prior knowledge; l is a penalty term that forces scat-
tered variables in a separate cluster Cs; |S| is the number
of scattered genes in the noise cluster; C = {C1, . . ., Ck,
Cs} is the resulting clustering assignment. Minimization
of Equation 9 produces a clustering solution. Intuitively,
a smaller l will produce tighter clusters, but more genes
will be assigned to the noise set.
The prior knowledge comes in the form of L known

pathways in which gene i participates. If each pathway l
(1, . . ., L) contains Nl genes then xnl is the expression
profile of gene n in pathway l. The value of the weight
function w(xi; L) is directly proportional to the distance
between the expression vector of gene i (i.e. xi) and one
of the l pathways. Thus, the value of w(xi; L) is small for
genes whose expression vector xi closely follows at least
one of pathways in the set L. How well a gene follows
pathways in the set L is defined by formula

min
l

1
Nl

Nl∑
n=1

||xi − xnl|| (10)

Shen and co-authors observed that the parameter w(xi;
L) in PW-Kmeans algorithm is gene-specific and
remains the same no matter which cluster the gene is
assigned to [20]. Therefore, while weighting does help
identifying the scattered genes, it does not enhance the
clustering of genes with similar functions. To overcome
this limitation, Shen proposed a novel weighted cluster-
ing method, Dynamically Weighted Clustering with
Noise set (DWCN) that considers the same weight for
all genes within one cluster. Instead of the parameter w
(xi; L) in the original equation (9) Shen uses the smallest
p-value of over representation of all possible GO terms
for the genes in the cluster. Consequently, the method
separates scattered genes and makes use of functional
annotation data to enhance the clustering of genes with
similar functions. The authors showed that DWCN out-
performs both the original K-means and PW-Kmeans

methods on simulated data and gave clusters with
strong biological explanation.
The third concept also uses grouping of genes accord-

ing to prior knowledge in purpose of better clustering.
It extends model-based clustering by using the assump-
tion that genes with similar GO annotation have the
same probability to belong to one cluster. The concept
was realized by Pan [21] in stratified model-based clus-
tering method (Figure 6 in Additional file 1). Model-
based clustering methods build a gene probability distri-
bution function to belong to all possible clusters and
use the similarity among the functions to cluster genes.
The initial probability distribution function for each
gene to belong to the clusters is

f (xi;�) = π

C∑
c=1

fc(xi; θc) (11)

where xi is the expression vector of gene i, C is the
number of clusters, fc is a probability distribution func-
tion with parameters θc(θc = {μc, δ2c } where μc is a gene
expression mean and δ2c is a gene expression variance in
probability distribution c). The parameter π is the prior
probability that a gene originates from each distribution
(in other words, the prior probability that a gene
belongs to each cluster). The parameter Θ is a set of
unknown parameters (π, θc) that will be maximized in
the procedure. Originally, π is assumed to be the same
for all genes. Pan suggested to take an advantage of
known grouping of genes and assign to all genes in each
group a prior probability of belonging to a cluster. He
replaces π by a cluster and gene group specific probabil-
ity πh. For that all genes are grouped to H1, . . . H sub-
scripth groups. Then, the same prior probability πh to
end up in one cluster c is assigned to all genes in a
group h. The initial probabilistic function for any gene i
in functional group h became

fh(xi;�h) =
C∑
c=1

πhfc(xi; θc) (12)

where Θh = {πh, θc}. Pan argued that the probability
component of model-based methods fits very well the
highly variable nature of biological data and gives a
broad range of possibilities to include biological prior
knowledge. As an example, Pan tested the probability of
genes with the same GO labeling to comprise one
cluster.
The discussed implementations of the second and

third concepts do not realize the slider and do not allow
to change the ratio between influence of prior knowl-
edge and experimental data. Considering incompleteness
and shortcomings of secondary databases that are used
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in the methods, new realizations of the slider are of
interest.
We have summarized cluster methods that include

prior knowledge in calculation of the similarity score in
Table 2 Additional file 2. All the methods described are
from transcriptomics studies. We are not aware of any
implementation of cluster models in metabolomics that
includes prior knowledge. However, clustering of meta-
bolomics data is a helpful and popular approach. No
doubt it is worthwhile to implement clustering methods
in metabolomics that are driven by prior knowledge.
The functional annotation of metabolites is available
and could potentially be used for knowledge guided
clustering.

Supervised classification methods
The main goal of supervised methods is to infer a classi-
fication function from a labeled training dataset. The
classification function should be able to correctly predict
labels of new samples. Examples of such algorithms
include regression analysis, support vector machine and
decision trees. We define three concepts of including
prior knowledge that are used to adjust supervised
methods. The first concept separates all variables to
groups according to prior knowledge and builds a classi-
fication model for each group independently. The sec-
ond concept forces genes or metabolites that are
connected in a network to have close coefficients in the
classification function. The third concept uses prior
knowledge to predefine the topology of a decision tree.
To reduce the multiple testing problem and to

improve the sensitivity and specificity of the classifica-
tion, the first concept uses a group of related variables
to classify the samples. A group may represent a path-
way or a set of genes with similar GO annotation. The
concept does not require the changes to be in the same
direction (only up or only down) but it gives a larger
score to a group where changes among more variables
are found (Figure 7 in Additional file 1).
The idea was suggested by Goeman et al. and imple-

mented in the global test [22]. The authors employed
the logistic regression model and rewrote it for J sam-
ples and I’ genes as follow

E(Yj| β) = h−1(α +
I′∑
i=1

xijβi) (13)

where a is the intercept, bi the regression coefficient
for gene i, h the logit function, xij is the gene i expres-
sion profile and j is the index for the samples (j = 1, . .
., J). Note, that the model is built for I’ variables (genes),
which belong to the same group (or pathway). For each
group of genes, defined by the prior knowledge, a sepa-
rate model will be build. The authors suggested a “gene

influence” plot to uncover the influence of a single gene.
As an example, the authors demonstrated the new
method using gene expression data for a cell line treated
and untreated with heat shock. While the overall expres-
sion profile was not notably different between two
groups, the global test showed significant differences for
groups of genes known to function in heat shock
response according to GO database.
A possibility to use the global test for a metabolomics

application was shown by Hendrickx et al. [23]. The
authors successfully tested a selection of pathway meta-
bolites from KEGG on metabolites profiles of E. coli and
S. cerevisiae. Specifically, they showed that glycolysis
pathway and the TCA cycle pathway are significantly
different when aerobic conditions are compared to anae-
robic conditions for S. cerevisiae. The authors concluded
that the results of the global test correspond with the
physiology of studied organisms and therefore can be
used in metabolomics.
The idea of the global test was further developed by

several authors including the highly cited method of
Chuang et al. [24]. They interpret groups of genes as
subnetworks and assume that proteins that are close in
protein-protein interaction networks have a similar gene
expression vector. While the idea to test a group of
genes simultaneously instead of multiple testing for each
single gene remains the same in Chuang’s work, we
would like to put attention on how the groups were
defined. The authors score subnetworks of protein-pro-
tein interaction network in gene expression data of
metastatic and non-metastatic breast tumors. To find
subnetworks a greedy search algorithm is used. A score
function is calculated for a set of genes that is combined
based on topology of the network. In each iteration step
a next closest gene is added and a new score is checked
for increasing. The score function O(l) for a particular
subnetwork l is calculated by the formula

O(l) =
∑
x∈l

∑
y∈z

p(x, y)log
p(x, y)
p(x)p(y) (14)

where p(x, y) is the joint probability density function
of subnetwork l and a set of output labels z (metastatic
or non-metastatic); p(x) and p(y) are marginal density
functions. The score function O(l) represents the mutual
information between gene expression vector xi from
subnetwork l over samples and a corresponding vector
of sample labels z. All significantly different subnetworks
represented as gene groups were used to train the logis-
tic regression model. The authors showed that subnet-
work markers are more reproducible and achieve higher
accuracy in the classification than individual marker
genes selected without network information.
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The first concept incorporates prior information as a
vector with binary labels that show whether or not a
gene belongs to a group. This concept does not allow
implementation of the slide ruler.
The second concept is based on the idea that genes in

the same regulatory network will have similar expression
profiles. Following this idea Rapoport et al. [25] sug-
gested to consider a gene expression profile from one
microarray experiment as a function and to apply the
Fourier transform to it. Genes were arranged according
to the topology of metabolic networks from the KEGG
database. The Fourier transform was used to decompose
the expression function into “low-frequency” and “high-
frequency” components. The authors argued that the
“high-frequency” components contained expression pro-
files of unimportant genes and measurement errors
while the “low-frequency” components reflected proper-
ties of the system. The low-frequency part of the
decomposed data was successfully used for PCA analysis
and to train support vector machine classifiers to distin-
guish between irradiated and non-irradiated samples of
S. cerevisiae strains.
Another attempt to implement the second concept

was done by Li et al. in a network-constrained regulari-
zation procedure for a linear regression model [26]. The
method requires a smoothness of the regression coeffi-
cients across the network. The smoothness means that
two variables that are connected in the network must
have close weights in the classification function (Figure
8 in Additional file 1). The regularization is based on
the normalized Laplacian of the network and similar to
L1 and L2 penalties on the regression coefficients called
the LASSO or elastic net [27] (Figure 9 in Additional
file 1 shows an example of Laplacian matrix). For non-
negative penalty coefficients l1 and l2 the network con-
strained regularization criterion is defined as follows:

min
β

[(y − Xβ)T(y − Xβ) + λ1|β| + λ2β
TLpβ] (15)

In the minimization procedure of bTLpb only coeffi-
cients of connected genes are important and coefficients
of not connected genes are neglected by 0 in the Lapla-
cian. Moreover, because the sum of each row of the
Laplacian is zero, absolute values in b which are close in
the network are forced to be similar. This is how the
network-constrained coefficient bTLpb induces a
smooth solution of b on the known network.
The third concept employs a pathway topology to

build an easy interpretable decision tree (Figure 10 in
Additional file 1). Each inner node corresponds to a
gene; each edge corresponds to either up regulation or
down regulation of the gene. Finally, each leaf corre-
sponds to a class in the classification problem. By the
idea, each path from the root to the leafs can be

analyzed for biological interpretation of the system.
Consequently, it is possible to analyze the final decision
tree and identify up and down regulated genes in each
of discriminated classes. The concept was implemented
by Dutkowski and Ideker in the method Network-
guided forest [28]. It is important to mention that the
method is not forced to use all information about the
network; only the important for studied experiment and
classification problem part will be used. It is of the
interest to implement the method in metabolomics,
because the network guided forest method uses the net-
work topology but does not assume a similar concentra-
tion of neighboring metabolites. The concentration
freehold can be used as the decision value.
We summarize supervised methods that include prior

knowledge to guide the analysis in Table 3 Additional
file 2.

Covariance matrices
This section provides a separate discussion of the covar-
iance matrix because it plays a central role in many
multivariate data analysis methods, as discussed in the
previous sections.
Estimation of the covariance matrix from omics data

with a low number of samples and a high number of
variables is notoriously difficult. A solution is to regular-
ize the estimation by a structured so-called target
matrix. Schafer and Strimmer first gave an overview of
the most widely used target matrix Tt for analysis of
high dimensional genomics data that, however, did not
incorporate prior knowledge [29]. The authors suggested
that the covariance matrix T can be estimated as

T = λTt + (1 − λ)Tu (16)

where Tu is unstructured covariance matrix estimated
from data; Tt is the structured covariance target matrix.
Later, several authors suggested to use prior knowledge
to define Tt to allow the regularization of all variables
in one biological group together rather then individual
regularization for each variable [30,31]. We note that if
Tu represents experimental data and Tt represents prior
knowledge then l provides an implementation of the
slide ruler. The main concept of covariance matrix opti-
mization by prior knowledge is to push the structure of
the matrix towards known biology. For example, the
confidence that a covariation between two genes in
experimental data is not due to the high dimensionality
of the data is higher when there is also evidence of a
connection between these genes from the prior knowl-
edge (Figure 11 in Additional file 1). We discuss two
methods of defining mymatrixTt by prior knowledge
below. Guillemont et al. presented a method called
graph constrained discriminant analysis (gCDA) that
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regularized estimation of the gene covariances by the
Laplacian matrix Lp of a known gene regulation net-
work [31]. The authors defined the target matrix Tt as

Tt = (Lp +U)−1 (17)

where U represents the unit (identity) matrix that sta-
bilizes the covariance matrix Tt. We give an example of
matrix Tt in Figure 12 in Additional file 1. The authors
compared performance of the method with gene regula-
tion networks inferred from microarray data (other than
the analyzed) and with gene regulation networks
obtained from KEGG database. Interestingly, gene regu-
lation networks inferred from microarray data always
outperformed gene regulation networks from KEGG.
Tai and Pan also used gene regulation networks to con-

struct a matrix Tt with block-diagonal structure [30]. All
genes were combined in groups (according to pathways in
which genes participate) and represented by matrices on
the diagonal of Tt. The diagonal values are obtained from
the covariance matrix Tu. The off-diagonals of genes that
are not related are set to 0 while the off-diagonals of
related genes are calculated by the formula

ttii′ = th
√
tui′i′ tuii (18)

where th is the covariance mean of all genes in the
group h; ti’i’ and tii are diagonal values obtained from
the covariance matrix Tu. The block-diagonal covar-
iance matrix constructed this way mathematically repre-
sents the idea that genes from the same functional
group will have more close covariances than genes from
different functional groups. The final covariance matrix
T was used in classification of simulated and real tumor
data by linear discriminant analysis. The classification
function based on the new covariance matrix showed a
better performance compared to classification functions
that were based on covariance matrices regularized by
mathematical criteria along. Moreover, the interpreta-
tion of the result was improved because the classifica-
tion function was guided by groups of genes with
biological meaningful connection.
The final covariance matrix defined by Tai and Pan

was further studied by Jelizarow et al. [32]. Specifically,
they showed that an arbitrary solution to solve prior
knowledge ambiguity affected the classification result.
The prior knowledge ambiguity included genes that
were in no functional group or genes that were in more
then one functional group. The authors compared per-
formance of ten structured matrices Tt that solved the
ambiguity in ten different ways.

Discussions and conclusions
In this work, we reviewed data analysis methods that
incorporate prior biological knowledge in the definition

of the model and the estimation of its parameters. Most
of the reviewed methods are developed in the field of
transcriptomic and only few are available for metabolo-
mics data. It might reflect the problem of metabolite
identification in metabolomics data. It remains hard to
assign metabolite names to peaks what leaves us with
only a limited number of variables which are known and
those for which prior knowledge can be incorporated.
Authors of the methods claim that prior knowledge

forces and guides the analysis towards the underlying
biology and give more reproducible and reliable result.
However, to promote a more wide-spread use of these
approaches, much more validation of the results is
required. Another factor that limits the further use and
development of these methods is the lack of easy acces-
sible implementations of the methods. Most of the algo-
rithms are not available as commercial or open-source
software (e.g., as an R package), nor are they available as
a web-application or web-service. Since these algorithms
are generally complex, it will not be easy for a biologist
without mathematical and programming skills to imple-
ment any of these methods and use it to analyze the
data.
One way forward is to define a common and accepted

framework to test methods using prior knowledge. Cur-
rently, authors use their own set of data and validation
procedures, which makes it very hard to compare the
performance of such methods. Such a validation frame-
work is important since recent evidence shows that
prior knowledge does not always help to improve the
result. For example, the probability model based cluster-
ing approach of Pan did not show an improvement
when including prior knowledge on a set of 300 gene
expression microarrays [21]. However, the method
seems to give an improvement when applied to a smal-
ler dataset. The authors suggest that in the large dataset
there was enough information in the data itself. Staiger
et al. showed that a simple aggregation of the expression
levels of several genes did not outperform a single gene
set to train prognostic classifiers in breast cancer [33].
Four methods were compared, including the method of
Chuang et al. [24], which is discussed in our paper. The
authors specifically evaluated a framework to compare
performance of four cluster methods that used prior
knowledge. First, protein-protein interaction networks
and gene regulatory networks were used as prior knowl-
edge to group genes with each of the four methods.
Subsequently, the groups were used as features to train
three classification methods (nearest mean classifier,
logistic regression, 3 NN classifier). While authors of
the four methods claimed to increase the stability of fea-
tures chosen with prior knowledge and/or to increase
classification accuracy, Staiger et al. showed that they
did not perform better than single-gene based methods.
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To our knowledge, this is the first attempt to develop
such a framework and in our opinion, the development
of frameworks for correct comparison of different
approaches desperately needs more attention.
In general, we can conclude that more research is

needed to understand if and how to optimally apply
prior knowledge in data analysis methods. A critical
assumption is that the prior knowledge is correct and
valid for the data being analyzed. If this assumption
does not hold, prior knowledge might produce erro-
neous results. Moreover, it is necessary to study a role
of prior knowledge in the analysis of pathological states
when main metabolic and regulatory pathways undergo
essential changes and no longer are in agreement with
mainstream prior knowledge. For example, changes in
metabolic pathways [34], gene regulatory pathways [35],
and even massive genomic rearrangements [36] are well
known for cancer cells. The question is, does knowledge
about normal states of a system is appropriate or helpful
for exploration of pathological states of the system?
We reviewed more than twenty methods that repre-

sent the current state of high-throughput data analysis
by incorporating prior knowledge in transcriptomics and
metabolomics. We highlighted features and differences
of the methods and the type of prior knowledge that
was used. We showed that there is a need for a proper
framework which would allow a fair comparison of dif-
ferent methods and would help further understanding of
how prior knowledge influences results.
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