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Abstract

Background: Incorporation of omic data streams for building improved systems biology models has great potential
for improving their predictions of biological outcomes. We have recently shown that cyclosporine A (CsA) strongly
activates the nuclear factor (erythroid-derived 2)-like 2 pathway (Nrf2) in renal proximal tubular epithelial cells (RPTECs)
exposed in vitro. We present here a quantitative calibration of a differential equation model of the Nrf2 pathway with a
subset of the omics data we collected.

Results: In vitro pharmacokinetic data on CsA exchange between cells, culture medium and vial walls, and data on the
time course of omics markers in response to CsA exposure were reasonably well fitted with a coupled PK-systems
biology model. Posterior statistical distributions of the model parameter values were obtained by Markov chain Monte
Carlo sampling in a Bayesian framework. A complex cyclic pattern of ROS production and control emerged at 5 μM
CsA repeated exposure. Plateau responses were found at 15 μM exposures. Shortly above those exposure levels, the
model predicts a disproportionate increase in cellular ROS quantity which is consistent with an in vitro EC50 of about
40 μM for CsA in RPTECs.

Conclusions: The model proposed can be used to analyze and predict cellular response to oxidative stress, provided
sufficient data to set its parameters to cell-specific values. Omics data can be used to that effect in a Bayesian statistical
framework which retains prior information about the likely parameter values.

Keywords: Bayesian data analysis, Cyclosporine A, Glutathione pathway, Integrated omics, Nrf2 pathway, Oxidative
stress, Renal proximal tubule epithelial cells, Systems biology
Background
The quantitative modeling of toxicity pathways is a topic
of current interest in predictive pharmacology and toxi-
cology [1-3]. One of its challenges is to integrate omics
data with systems biology models for parametric infer-
ence and model checking [4]. In a recent paper, Wilmes
et al. [5] demonstrated a qualitative integration of tran-
scriptomic (TCX), proteomic (PTX) and metabolomic
(MTX) data streams to gain a mechanistic understand-
ing of cyclosporine A (CsA) toxicity. CsA is an im-
portant molecule for immunosuppressive treatment and is
used in many post-graft medical protocols [6]. It is mainly
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metabolized by CYP3A4 and CYP3A5 and is a substrate
of the P-glycoprotein (ABCB1) efflux transporter [6,7].
However, at high dose it is nephrotoxic and causes dam-
age to the kidney vasculature, glomerulus and proximal
tubule [8-10]. CsA is thought to induce oxidative stress
at the mitochondrial level, and co-administration of anti-
oxidants with CsA appears to mitigate its nephrotoxic
effects [11], yet, the precise mechanisms of its toxicity
are still unclear.
The Nrf2 oxidative response pathway is triggered

when oxidative stress is sensed by Keap-1, resulting in
stabilization and nuclear translocation of Nrf2 [12]. Nrf2
binds to the antioxidant response element (ARE) indu-
cing the transcription of several genes involved in gluta-
thione synthesis and recycling, antioxidant activity,
phase II metabolism and transport [12]. The Nrf2 re-
sponse has been shown to be induced in several tissues
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Figure 1 Schematic representation of the calibration (1) and
prediction (2) processes used in this article. The coupled
pharmacokinetic-systems biology model (PKSB) of the Nrf2 pathway
was calibrated by MCMC sampling in a Bayesian framework with PK
and omics data obtained during repeated treatment of RPTECs by
CsA. After calibration, the model was used to make predictions
enabling model checking.
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in response to chemical or physiological stress. The kid-
ney and particularly the proximal tubule is especially
sensitive to oxidative stress. Many nephrotoxins induce
Nrf2 nuclear translocation and Nrf2-dependent gene
induction in renal epithelial cells, including potassium
bromate, cadmium chloride, diquat dibromide and cyclo-
sporine A [5,13,14]. Moreover, we have recently shown
that physiological stress such as glucose depletion and
subsequent re-introduction results in Nrf2 activation in
renal cells [15]. Here, we use a subset of the Wilmes’ et al.
[5] omics data to calibrate the parameters of a systems
biology model describing the Nrf2 pathway. The model
predictive ability is then assessed by comparison to CsA
toxicity data on RPTEC cells.

Methods
Data
RPTECs culture conditions, CsA concentrations mea-
surements, and TCX, PTX and MTX data collection and
analysis were described in detail in Wilmes et al. [5].
Briefly, RPTECs cells were cultured in 3 ml of serum-
free medium and matured for two weeks on micropor-
ous supports. They were then treated for fourteen days
with daily doses of CsA. The assay medium was renewed
prior to each dosing. Three groups of assays were per-
formed in triplicate: control, low CsA concentration
(5 μM) and high CsA concentration (15 μM).
CsA concentration was measured in the medium on

the first day at 0.5 h, 1 h, 3 h, 6 h and 24 h (just before
changing the medium), on the third, fifth, seventh, and
tenth day at 24 h (before changing the medium), and
on day fourteenth at the same times than on the day
one. Intracellular (cell lysate) CsA concentration and
quantity bound to plastic were measured on the first
and last days at the same times. Samples for TCX (on
Illumina® HT 12 v3 BeadChip arrays), PTX (obtained
by HPLC-MS) and MTX (by direct infusion MS) mea-
surements were collected at the end of day 1, day 3
and day 14. All fold-changes were calculated using the
absolute value measured at the first time of the control
experiment as a reference, and for all doses. Typical
RPTEC cell volume was determined by electron micros-
copy and stereology to be 2000 ± 140 μm3. On average, 2.1
millions cells were present in each assay well. All those
data are given as additional material (Additional file 1:
Tables S2 to S9).

Mathematical models
Modeling was done into two steps: (i) Modeling the
in vitro pharmacokinetics (PK) of CsA (exchange be-
tween cells, medium and vial walls) with a minimal dis-
tribution model. (ii) Modeling the effects of CsA on
omics markers at the cellular level with a coupled PK-
systems biology model. That model was calibrated by
Markov chain Monte Carlo (MCMC) sampling [4] with
the above in vitro PK and omics data used together.
Calibration summarizes and integrates the information
brought by the various types of omics data into the co-
herent scheme of a unified model. The calibrated model
was then run to predict various quantities of interest at
a higher level in the hierarchy of biological effects. Such
predictions can be compared to further observations, for
example on toxicity, to help check the model. That process
is shown schematically on Figure 1.
In vitro pharmacokinetic model. A 3-compartment

model was developed to describe CsA exchange between
cell medium, cells and vial walls [5]. In that model, CsA
can enter and exit the cells, bind to and unbind from
the plastic walls and can be metabolized within cells.
Several mathematical forms for exchange rates were
tested. The best fit was obtained using a first order entry
into cells with Michaelis-Menten (saturable) exit rate, a
first order attachment to vial wall with non-integer (fractal)
order detachment, and Michaelis-Menten metabolism.
The following differential equations were used to de-
scribe the time course of CsA quantities in the cytosol,
medium, and on vial walls:

∂CsAcytosol

∂t
¼ CLin1

CsAextracellular

V extracellular

−
CLout1 ⋅CsAcytosol

V cytosol⋅Kmout1 þ CsAcytosol

−
vmax⋅CsAcytosol

Km2 þ CsAcytosol

ð1Þ
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∂CsAextracellular

∂t
¼ −CLin1

CsAextracellular

V extracellular

þ CLout1 ⋅CsAcytosol

V cytosol⋅Kmout1 þ CsAcytosol

−k1⋅CsAextracellular þ k2 CsAwallð Þk3
ð2Þ

∂CsAwall

∂t
¼ k1⋅CsAextracellular−k2 CsAwallð Þk3 ð3Þ

The model parameters are described in Table 1.
Coupled PK-systems biology model of the Nrf2 path-

ways (Figure 2). The model used was adapted from
Zhang et al. [16]. The model full set of equations is pro-
vided in the Additional file 1: Section 1. In brief, CsA
induces oxidative stress by increasing reactive oxygen
species (ROS) production. ROS, owing to their electro-
philicity, can be detected by the molecular sensor Kelch-
like ECH-associated protein 1 (Keap1), which promotes
the ubiquitination and eventual degradation of Nrf2
[17,18]. When Keap1 is oxidized, Nrf2 ubiquitination is
lowered [18], making Nrf2 available to enter the nucleus.
Once in the nucleus, Nrf2 binds to small Maf pro-
teins to form Nrf2-Maf heterodimers [19]. Those can
bind to antioxidant responses elements (ARE) in the
promoter region of glutamate cysteine ligase catalytic
subunit (GCLC), glutamate cysteine ligase modifier sub-
unit (GCLM), glutathione synthetase (GS), glutathione
Table 1 In vitro CsA kinetic parameters description and their

Parameter Description Un

CLin1 Diffusion rate constant for cellular uptake μm

Kmout1 Michaelis constant for diffusion for cellular efflux μm

CLout1
Kmout1

Diffusion rate constant over Michaelis constant
for cellular efflux

μm

k1 Plastic binding rate constant se

k3 Power law coefficient for unbinding dim

k2 Plastic unbinding rate constant zm

vmax Maximum rate of metabolism zm

Km2 Michaelis constant for intra-cellular metabolism zm

*: LU: Log-uniform distribution (lower bound, upper bound).
**: 1 zmol = 1 zeptomole = 10−21 mol.
peroxidase (GPx), and ABCC2 genes [17,19], Maher, 2007
#27. GCLC, GCLM, and GS are involved in GSH synthesis.
GPx detoxifies ROS, using GSH as a co-substrate. Zhang’s
model was developed for a generic xenobiotic, so the fol-
lowing structural changes were made to consistently de-
scribe the cell kinetics and mode of action of CsA:

– CsA can enter or exit the cell, and attach to or detach
from the vial walls as in the in vitro PK model (eqs.
A10, A11, A13). Inside the cell, CsA distribution to the
nucleus is also modeled (eq. A12);

– In the cell, CsA is metabolized by cytochrome P450
3A5 (CYP3A5) into a metabolite X’ (not followed
because without influence on the model
components). CsA is mainly metabolized by CYP3A
isoforms [6], and in kidney cells in vivo only
CYP3A5 is significantly expressed [20];

– Oxidative stress, characterized by the total quantity of
oxidative compounds in the cell (ROS), was explicitly
introduced in the model as a state variable (eq. A75);

– The production of ROS depends on CsA
concentration in the cell, and ROS are eliminated by
GPx (eq. A75) in a non-reactive species pool (NRS)
(not followed and non-influent on the system);

– Keap1 and the Nrf2-Keap1 complex are oxidized by
ROS (eqs. A52, A53, A72, A73).

All the other equations are the same as in Zhang et al.
[16]. In addition, some parameters had to be set to
statistical distributions

its Prior Posterior mode,
mean ± SD

3.sec−1 LU*(10−1, 104) 99.6,

99.8 ± 21

ol.L−1 LU (100, 50000) 2965,

3160 ± 620
3.sec−1 LU (10−2, 20) 0.581,

0.568 ± 0.16

c−1 LU (10−6, 5 × 10−4) 3.55 × 10−5,

3.54 × 10−5 ± 1.0 × 10−5

ensionless Uniform (0, 0.95) 0.921,

0.802 ± 0.074

ol(1-k3)**.sec−1 LU (10−4, 0.5) 6.01 × 10−4,

6.09 × 10−3 ± 8.7 × 10−3

ol.sec−1 LU (0.1, 5000) 40.0,

47.2 ± 14

ol LU (5 × 105, 5 × 107) 2.18 × 106,

3.43 × 106 ± 2.2 × 106



Figure 2 Schematic representation of the coupled pharmacokinetic-systems biology model of the Nrf2 pathway.
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particular values for CsA: In the model, xenobiotics can
bind to the AhR nuclear receptor. However, CsA is not a
known AhR ligand, so its binding parameters (kb2 and kb5)
were set to zero. Additional file 1: Table S1 gives the model
parameters’ values and the state variables’ initial values.
Calibration of the models
Bayesian inference [4,21] was used to calibrate all the
in vitro PK model parameters with data on the CsA
quantities measured in the medium, cells, and on vial
walls (Additional file 1: Table S2 to S7). Non-informative



Table 2 Systems biology model parameters description and their statistical distributions

Parameter Description Units Prior distribution Posterior mode,
mean ± SD

vmax7 Maximum rate of CsA metabolism sec−1 LN (0.2, 3) 0.187

0.274 ± 0.233

kf 75 Basal rate of ROS formation zmol.sec−1 LN (12, 3) 79.1

135 ± 80.8

vmax8b Maximum rate of ROS metabolism sec−1 LN (8, 3) 2.67

3.88 ± 2.54

kox10 Keap1 oxidation rate constant zmol−1.sec−1 Uniform (10−8, 10−2) 3.02 × 10−6

3.86 × 10−6 ± 2.72 × 10−6

kROS ROS formation rate constant sec−1 Uniform (10−8, 10−2) 6.55 × 10−5

8.86 × 10−6 ± 3.86 × 10−5

kb18 Nrf2 and Maf binding rate constant sec−1 LN (0.003, 3) 0.0124

0.0193 ± 0.0167

kTSP21 mRNACYP transcription rate constant sec−1 LN (1.07, 3) 1.29

1.65 ± 1.85

kTSP28 mRNANrf2 transcription rate constant sec−1 LN (0.00611, 3) 0.087

0.062 ± 0.0603

kTSP34 mRNAGS transcription rate constant sec−1 LN (1.15, 3) 1.07

1.34 ± 0.53

kTSP42 mRNAGCLC transcription rate constant sec−1 LN (1.98, 3) 1.28

2.27 ± 1.91

kTSP48 mRNAGCLM transcription rateconstant sec−1 LN (3.22, 3) 3.95

4.84 ± 3.79

kTSP57 mRNAGST transcription rate constant sec−1 LN (0.242, 3) 0.021

0.553 ± 0.949

kTSP57b mRNAGPx transcription rate constant sec−1 LN (0.242, 3) 0.098

0.123 ± 0.0779

kTSP66 mRNAMRP transcription rate constant sec−1 LN (0.9, 3) 1.22

2.23 ± 3.55

kb52 GCLC and GCLM binding rate constant sec−1 LN (2 × 10−5, 3) 4.33 × 10−6

1.09 × 10−5 ± 9.19 × 10−6

kind NMAð Þ27 Induction coefficient for Nrf2 gene zmol−1.sec−1 LN (100, 3) 150

236 ± 433

kind NMAð Þ33 Induction coefficient for GS gene zmol−1.sec−1 LN (5.95, 3) 2.17

3.85 ± 2.33

kind NMAð Þ41 Induction coefficient for GCLC gene zmol−1.sec−1 LN (8.7, 3) 22.1

43.2 ± 25

kind NMAð Þ47 Induction coefficient for GCLM gene zmol−1.sec−1 LN (1.6, 3) 3.28

5.75 ± 3.15

kind NMAð Þ56 Induction coefficient for GST gene zmol−1.sec−1 LN (11.9, 3) 8.46

10.4 ± 8.61

kind NMAð Þ56b Induction coefficient for GPx gene zmol−1.sec−1 LN (11.9, 3) 1.37

6.75 ± 6.51

kind NMAð Þ65 Induction coefficient for MRP gene zmol−1.sec−1 LN (16, 3) 6.43
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Table 2 Systems biology model parameters description and their statistical distributions (Continued)

9.62 ± 7.85

vmax GCLð Þ72 Maximum rate of γ-GC synthesis by GCL sec−1 LN (8.2, 3) 83.4

80.3 ± 67.5

vmax GCLCð Þ72 Maximum rate of γ-GC synthesis by GCLC sec−1 LN (1.9, 3) 1.64

2.16 ± 3.11

vmax73 Maximum rate of GSH synthesis sec−1 LN (6.5, 3) 8.57

10.3 ± 4.43

vmax74 Maximum rate of GSH degradation zmol.sec−1 LN (1845, 3) 283

374 ± 353

Km74 Michaelis-Menten constant of GSH degradation zmol LN (2 × 107, 3) 1.62 × 108

2.22 × 108 ± 2.36 × 108
*: 1 zmol = 1 zeptomole = 10−21 mol.
**: LN: Log-normal distribution (mean, SD).
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(vague uniform) prior parameter distributions were used
(see Table 1). Their bounds were set to span an arbitrar-
ily large range of values without constraining estimation.
The data likelihoods were assumed to follow a lognor-
mal distribution around the model predictions, a stand-
ard assumption with such measurements. Measurement
errors’ geometric standard deviations were assumed to
be specific of each of the three measurement types
(different procedure were used for their obtention).
They were assigned vague log-uniform prior distributions
(spanning a range corresponding to approximate coeffi-
cients of variation from 1% to a factor 2) and were
calibrated together with the other model parameters.
Therefore a total of 11 parameters (8 kinetic parameters
and 3 statistical ones) were calibrated. The posterior statis-
tical distributions of those parameters were obtained by
MCMC sampling [4].
For the coupled PK-Nrf2 pathway model, the parame-

ters directly controlling CsA kinetics were set to the
joint posterior distribution mode found by the above
calibration (see Table 1). Another 27 structural parame-
ters (Table 2) were selected for calibration on the basis
of our understanding of the model structure with the
help of a preliminary Monte Carlo sensitivity analysis
[22] (see Additional file 1: Section 2). They were cali-
brated using fold-change omics data (as a function of
time and CsA dose) on Nrf2 mRNA, CYP3A5 mRNA,
GS mRNA, GCLC mRNA, GCLM mRNA, GST mRNA,
GPx mRNA, ABCC2 mRNA, GCLM protein, GS protein,
MRP2 protein, γ-glutamylcysteine (γ-GC), and GSH. Four
of the parameters calibrated have a direct influence on the
rate of ROS synthesis, metabolism and interaction with
Keap1. Another 15 parameters control the activation and
induction of Nrf2, GCLC, GCLM, GST, GPx, CYP3A5,
GS and ABCC2 genes transcription. Another six parame-
ters control synthesis and degradation of γ-GC and GSH,
and the two last parameters control CsA metabolism and
Nrf2 and Maf binding. Model predicted fold-changes were
computed the same way as the experimental ones, using
the quantity predicted at the first time of the control ex-
periment as a reference. The prior parameter distributions
chosen were either vague uniform distributions (spanning
6 orders of magnitude) or lognormal distributions cen-
tered around the values used by Zhang [16] with a geo-
metric SD corresponding to a factor 3 (Table 2). The data
likelihoods were assumed to be lognormal distributions
around the model predictions. The same measurement
error geometric standard deviation was assumed for all
omics measurements. It was calibrated together with the
other model parameters, using a vague log-uniform prior.
Here also, posterior distributions of the parameter values
were obtained by MCMC sampling. For each model par-
ameter sampled, convergence was evaluated by computing
the potential scale reduction criterion of Gelman and
Rubin [23].

Quantification of CsA toxicity for RPTECs
The CsA concentration causing a 50% decrease (EC50)
in RPTECs’ viability was estimated from the data of
Limonciel et al. [24] who report dose–response data on
the viability of RPTECs, 3 T3 and HepaRG cells after ex-
posure to various chemicals, including CsA. The dose
range for CsA was not large enough to directly estimate an
EC50, but a dose–response relationship could nevertheless
be reconstructed by meta-analysis in a Bayesian frame-
work, borrowing information from the full dose–response
observed in the more sensitive 3 T3 and HepaRG cells. A
standard decreasing log-logistic model [25] was calibrated
to those dose-viability data using MCMC simulations (see
Additional file 1: Section 3 for details).

Software used
All model simulations and MCMC calibrations were per-
formed with GNU MCSim v5.4.0 [4]. The R software,
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version 2.15.1 [26] was used for other statistical analyses
and plots.

Results
In vitro pharmacokinetic model
Results for the in vitro pharmacokinetic model have
been previously reported in Wilmes et al. [5] and are
briefly summarized here. Overall, the data were well
simulated (see Figure five in Wilmes et al.). Exposure to
low concentrations of CsA (5 μM) led to a dynamic
steady state in about 3 days. The average ratio between
extracellular and intracellular CsA concentrations was
about 200, consistent with the fact that CsA is lipophilic
and accumulates in cells. Exposure to high concentra-
tions of CsA (15 μM) led to major alterations of the bio-
distribution of CsA over time. Steady state was reached
in the cells only after approximately 7 days. The average
ratio of intracellular to extracellular CsA concentrations
was about 200 on the first day (like at low concentra-
tion) and around 650 on the last day. Those results high-
light the presence of nonlinear phenomena in the
distribution of CsA in RPTECs. Note here the import-
ance of administering repeated doses: A unique adminis-
tration would not have uncovered those phenomena.
Figure 3 show the influence of the extra-cellular concen-
tration of CsA on the evolution of intra-cellular CsA
Figure 3 Predictions of RPTECs intracellular CsA quantity versus time
5 μM and 15 μM dosing.
quantities over time. Above about 15 μM extra-cellular
CsA, intra-cellular concentration does not reach a plat-
eau within 14 days.

Coupled PK-systems biology model of the Nrf2 pathway
All the analyses and predictions presented here were
made using a (posterior) random sample of 5000 param-
eter vectors, obtained by keeping one in each 100 of the
second half of 200,000 iterations of five MCMC chains.
Approximate convergence required that number of runs,
and the median of the Gelman and Rubin’s criterion was
1.045. Figures 4 and 5 show the model fit obtained for
the in vitro omics data, at low and high CsA exposure
dose, respectively. The bundle of curves presented was
obtained using the maximum posterior parameter vector
and 49 other parameter sets randomly drawn from their
joint posterior distribution. It reflects residual uncer-
tainty in the model predictions, resulting from unavoid-
able measurement errors and modeling approximations.
Overall the data (a total of 227 omics data values) are
quite well fitted. After calibration, the relative differ-
ences between data and predictions are 38% on aver-
age (Additional file 1: Figure S3 shows an overall data
vs. prediction plot for both in vitro PK and PD). That
is somewhat above, but not by much, the expected
measurement precision of the data. The worst fits are
and dose during repeated dosing. Thick red lines are predictions for



Figure 4 Model fit to the omics data at low CsA exposure. Transcriptomics (Nrf2 mRNA, GS mRNA, GCLC mRNA, GCLM mRNA, GST mRNA,
GPx mRNA and ABCC2 mRNA) proteomics (GCLM, GS, and MRP2), and metabolomics (γ-GC, and GSH) fold-changes time-course in RPTEC cells
during 14 days with repeated 5 μM CsA. The blue line indicates the best fitting (maximum posterior probability) model prediction. The black lines
are predictions made with 49 parameter sets randomly drawn from their joint posterior distribution. The red circles represent data.
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seen for the genes whose transcription apparently de-
creased, while the model could only predict an increased
transcription. Yet, in most cases the decrease observed
was modest (down from 1 to 0.7 at most). Also, the early
and rather large increase in glutathione peroxidase
mRNA at 5 μM CsA, with a decrease at 15 μM, could
not be reproduced.
For all species, the time profiles are clearly different

between the two doses. At 5 μM CsA exposure (Figure 4)
periodic oscillations are pervasive. For many curves
(including the most probable one) the system does not
appear to have reached a dynamic equilibrium within
14 days. The oscillations’ period may differ from one
curve to another and goes up to four days, even though
the period of CsA administration was exactly one day.
Additional file 1: Figure S4 extends the simulation length
to 60 days, time at which a dynamic equilibrium is
reached in all cases with the same oscillation pattern. At
15 μM CsA exposure (Figure 3) two patterns emerge:
The first type of profile, which concerns all species except
GSH and γ-GC, is a plateauing curve. Different max-
imum values are reached after three days by different
curves. The second type, for GSH and γ-GC, starts with
oscillations which do not stabilized within 14 days.
Additional file 1: Figure S5 extends the simulation length
to 60 days and shows more clearly the long-term behav-
ior of GSH and γ-GC. The initial oscillations decrease
gradually in amplitude and completely disappear after
about 30 days.
Figure 6 shows model predictions of the time course

for the quantity of two non-observed chemical species –
the free nuclear Nrf2 protein and cellular ROS – over
14 days, at either low or high repeated CsA dosing. Add-
itional simulations were performed up to 60 days and
the trends were similar (data not shown). As for the pre-
vious chemical species for which we had data, large dif-
ferences are seen between low and high dosing. At low
CsA exposure a cyclic pattern is observed, which



Figure 5 Model fit to the omics data at high CsA exposure. Transcriptomics (Nrf2 mRNA, GS mRNA, GCLC mRNA, GCLM mRNA, GST mRNA,
GPx mRNA and ABCC2 mRNA) proteomics (GCLM, GS, and MRP2), and metabolomics (γ-GC, and GSH) fold-changes time-course in RPTEC cells
during 14 days with repeated 15 μM CsA. The blue line indicates the best fitting (maximum posterior probability) model prediction. The black
lines are predictions made with 49 parameter sets randomly drawn from their joint posterior distribution. The red circles represent data.
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disappears at high exposure where the ROS quantity
grows (less than exponentially) while the Nrf2 protein
quantity systematically reaches a plateau.
Figure 7 shows 3D plots of the influence of the extra-

cellular CsA concentration on the time course of cellular
ROS, nuclear Nrf2 protein, cellular GSH and cellular
GCL quantities. Figures for other species (GCLC, GCLM,
GPx, GS and GST) are not shown because their profiles
are very similar to the GCL one. The extracellular
concentration of CsA has a large influence on the amount
of ROS in the cytosol. For extracellular CsA concentrations
below 8 μM CsA, the concentration (or quantity) vs. time
profile of cytosolic ROS is oscillating, above 8 μM CsA, the
ROS profile rises in a hockey-stick fashion. For nuclear
Nrf2, cellular GSH and cellular GCL, depending on the
extracellular CsA concentration, the model predicts either
oscillating or plateauing profiles. As for ROS, the transition
is rather abrupt and occurs approximately at 8 μM CsA.
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Comparison to CsA EC50 in RPTECs
Based on our laboratory data, an estimate of 38.5 μM
(95% confidence interval: 24.5 μM to 69 μM) was
obtained for the EC50 of CsA for its effect on RPTECs via-
bility (details in Additional file 1: Section 1), after 14 days
of repeated dosing. Note that the maximum concentration
for CsA in water is about 50 μM so that value would actu-
ally be difficult to exceed. In any case, the above range of
CsA EC50 in RPTECs matches the predicted increase in
ROS beyond 15 μM seen on Figure 7.

Discussion
A proper assessment of drug or chemical safety from
in vitro assays requires the measurement of concentration
of the parent molecule (and eventually its metabolites) in
the assay medium and in cells [27,28]. Joint kinetic and
effect modeling can then be used to interpolate and ex-
trapolate the data obtained. Here, an in vitro pharmaco-
kinetic model was first built using LC-MS/MS data on
the distribution of CsA over time in human RPTECs. It
was then extended to include a description of the Nrf2
pathway response to the resulting oxidative stress. CsA
is highly lipophilic and its rapid uptake and accumula-
tion in cells was observed. At 5 μM CsA (daily initial
extracellular concentration), the model indicated that
steady-state was reached in about 2 days, whereas at
15 μM CsA, steady-state was reached only after 7 days.
Moreover, cellular CsA concentrations at steady-state
were clearly not proportional to exposure, and a dispro-
portionate accumulation of CsA was observed at high ex-
posure. That could be explained by an interplay between
the saturation of CsA metabolism and transport by
P-glycoprotein out of the cells. However, the amount
of CsA metabolized in our in vitro PK experiments on
RPTECs seems limited to only about 15% of the total
dose applied, at either low or high dose. So metabolism
alone cannot explain the large increase in concentration
that was observed. Also, if CsA entry and exit from
RPTECs were simply linear, the ratio of intra-cellular to
extra-cellular concentrations would stay constant in



Figure 7 Model predictions vs. time and CsA dose. Predictions are shown for cellular ROS quantity (nmol) (top left), nuclear Nrf2 quantity
(zmol) (top right), cellular GSH quantity (zmol) (down left) and cellular GCL quantity (zmol) (down right) quantities. The thick red lines are
predictions for 5 μM and 15 μM CsA exposures.
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time, and both curves would be parallel on the log-scale
(even while increasing because of metabolism saturation).
However, the concentration ratio clearly increases with
time and that is easily explained by the saturation of the
P-glycoprotein efflux mechanism which was observed by
Wilmes et al. [5] above 5 μM CsA exposure. Drug ac-
cumulation in target tissues is often associated with
tissue-specific toxicities, and it is important to account
for it. However, we did not observe a direct modulation
of CsA PK by its PD in our in vitro system, even though
CsA interactions with transporters are known [29]. In
particular, CYP 3A5 levels were not affected by CsA
levels, so CsA metabolism was not disturbed by induc-
tion or repression.
Zhang’s Nrf2 model was not intended to be used spe-

cifically with CsA or our cell system, so we had to re-
calibrate several parameter values. This was done in a
Bayesian statistical framework [21], to take into account
the prior information we had on several parameters.
Convergence of the MCMC simulations was difficult to
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obtain due to the high nonlinearity of the model and the
presence of cycles. Basically almost any sub-multiple of
the actual period would gives an acceptable fit, given the
measurement noise. Fortunately, the prior parameter
values documented by Zhang et al. stabilize the estima-
tion process. It would be probably impossible to calibrate
the model with a simple maximum likelihood approach
(i.e., without taking prior information into account). For
most parameters, the posterior mean estimate was clearly
different from the prior mean. The parameters control-
ling ROS formation (kf75) and ROS elimination (vmax8b)
had respectively higher and lower values, compared to
Zhang’s model, after MCMC sampling. We centered our
GPx parameters’ priors on the values used by Zhang
et al. for GST. Since the observed GST and GPx transcrip-
tomic data profiles were very different, it is not surprising
that the posterior distributions of GPx parameters are
clearly different from their prior. Via the Nrf2 pathway,
CsA seems to have a large influence on glutamate cysteine
ligase synthesis. While the basal transcription rates of
GCLC and GCLM have posterior values close to those of
Zhang’s et al., parameters of GCLC and GCLM genes
regulation by Nrf2, linked to ROS and CsA levels, have at
values about four times higher. Indeed the model is imper-
fect in that it does not describe many additional controls
and cross-talks with other pathways, or makes approxima-
tions. For example, GPx is specific for H2O2, and ROS are
eliminated by a number of enzymes, some of which Nrf2
influences negatively. Consequently, for example, our
model cannot explain the (small) decreases that were ob-
served for some gene transcripts and does not describe
well the time course of GPx mRNA at low dose. More ob-
servations or model refinements would be needed to
understand the origin (noise in the data or an inappropri-
ate model assumption) of that discrepancy.
The model still gives access to unmeasured effects of

CsA to cells, closer to a toxicity endpoint. The gener-
ation of ROS by CsA is an important toxicity mechanism
for that molecule. The retro-control of ROS scavenging
by the Nrf2 signaling pathway induces a highly nonlinear
behavior illustrated on Figure 7. The cyclic patterns ob-
served at low CsA exposure (Figure 4 and Additional file 1:
Figure S4) are interesting. A recent paper describes circa-
dian oscillations of the Nrf2/GSH pathway in mice lung
[30]. That pathway is well conserved and present in most
cells since it regulates oxidative species generated during
respiration. Therefore, a rhythmic pattern of Nrf2 activity
in RPTECs would not be surprising even in the absence
of CsA. In addition, the daily exposure of RPTECs to
5 μM CsA is likely to have produced a manageable burst
of oxidative stress at the beginning of each day. That
alone could explain the cycles seen, even if the nonlinear
dynamics of the model result in a period of two to three
days for those cycles. ROS generation runs out of control
at CsA exposure levels close to the high dose assayed
in vitro (15 μM for extra-cellular concentration) and the
cycles disappear (Figure 5 and Additional file 1: Figure S5).
We have an external corroboration of this finding: The
15 μM concentration was experimentally chosen to be the
highest not affecting cell survival. Above that level, toxicity
starts to have an impact on survival and the in vitro EC50
of CsA in RPTECS is probably close to 40 μM, so our
model predictions seem reasonable. However, as in many
systems biology models, only one signaling pathway has
been taken into account. We also do not have extensive
data allowing for an in-depth statistical cross-validation of
the many components of the model. Other ROS scaven-
ging mechanisms are present in RPTECs and could be in-
volved during CsA exposure. On the other hand, CsA
nephrotoxicity involves several mechanism [31-35] and it
is possible that ROS generation is not alone in causing crit-
ical damages.

Conclusion
Integrating omics approaches with mathematical systems
biology models is still rarely done [36,37], even though
that seems the best way to both understand the data and
improve the predictive ability of the models [38,39]. Our
modeling and simulations of the CsA mediated ROS
production gives biologists insight into mechanisms of
toxicity and provide quantitative estimates of toxicity be-
yond the time and dose range used in experiments. To
go further, it would be interesting to have a more precise
model description of GSH synthesis in the model, since
cellular ROS concentrations are clearly correlated to GSH.
It would also be interesting to couple this model with a
physiological based pharmacokinetic (PBPK) model for
CsA to be able to better predict human response. Still, our
results demonstrate the possibility to use different omic
data streams to extrapolate in time and dose the response
of the Nrf2 pathway to oxidative damage, far beyond our
current experimental possibilities.

Additional file

Additional file 1: Section 1. Differential equations of the Nrf2 pathway
model’. Section 2. Preliminary sensitivity analysis for the selection of Nrf2
model parameters to calibrate. Section 3. Quantification of CsA toxicity
for RPTECs. Figure S1. Maximum posterior fits of the log-logistic viability
model for 3T3 and HepaRG cells viability data as a function of CsA exposure
concentration. Figure S2. Maximum posterior fit and 95% confidence
bounds of the log-logistic viability model for RPTECs viability data as a
function of CsA exposure concentration. Table S1. Model parameters
values and initial state variables values. Table S2. Cyclosporine A quantities
measured in the extracellular medium at low CsA concentration exposure.
Table S3. Intracellular Cyclosporine A quantities measured at low CsA
concentration exposure. Table S4. Cyclosporine A quantities measured on
plastic at low CsA concentration exposure. Table S5. Cyclosporine A
quantities measured in the extracellular medium at high CsA concentration
exposure. Table S6. Intracellular Cyclosporine A quantities measured at high
CsA concentration exposure. Table S7. Cyclosporine A quantities measured
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on plastic at high CsA concentration exposure. Table S8. Fold changes
measured at low CsA concentration. Table S9. Fold changes measured at
high CsA concentration. Figure S3. Model fit to the data. The data values
are plotted against the model predictions, after model calibration. The PK
data are represented by black circles, the metabolomic data by green
square, transcriptomic by red triangles and proteomics by blue inverted
triangles. Figure S4. Transcriptomics, proteomics, and metabolomics
(γ-GC, and GSH) fold-changes time-course in RPTEC cells during 60 days
with repeated low dose CsA dosing. Figure S5. Transcriptomics, proteomics,
and metabolomics (γ-GC, and GSH) fold-changes time-course in RPTEC cells
during 60 days with repeated high dose CsA dosing.
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