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Abstract

heterogeneity, and the effect on fitness.

Background: Resistance to stress is often heterogeneous among individuals within a population, which helps
protect against intermittent stress (bet hedging). This is also the case for heat shock resistance in the budding yeast
Saccharomyces cerevisiae. Interestingly, the resistance appears to be continuously distributed (vs. binary, switch-like) and
correlated with replicative age (vs. random). Older, slower-growing cells are more resistant than younger, faster-growing
ones. Is there a fitness benefit to age-correlated stress resistance?

Results: Here this hypothesis is explored using a simple agent-based model, which simulates a population of individual
cells that grow and replicate. Cells age by accumulating damage, which lowers their growth rate. They synthesize
trehalose at a metabolic cost, which helps protect against heat shock. Proteins TslIT and Tps3 (trehalose synthase
complex regulatory subunit TSLT and TPS3) represent the trehalose synthesis complex and they are expressed
using constant, age-dependent and stochastic terms. The model was constrained by calibration and comparison
to data from the literature, including individual-based observations obtained using high-throughput microscopy
and flow cytometry. A heterogeneity network was developed, which highlights the predominant sources and
pathways of resistance heterogeneity. To determine the best trehalose synthesis strategy, model strains with different
Tsl1/Tps3 expression parameters were placed in competition in an environment with intermittent heat shocks.

Conclusions: For high severities and low frequencies of heat shock, the winning strain used an age-dependent bet
hedging strategy, which shows that there can be a benefit to age-correlated stress resistance. The study also illustrates
the utility of combining individual-based observations and modeling to understand mechanisms underlying population
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Background

There is increasing appreciation for individuality of mi-
crobes [1,2]. Even populations grown up from a single cell,
in a constant environment can exhibit significant pheno-
typic heterogeneity in gene expression, protein content and
physiology. Individual heterogeneity can be important to
population fitness by allowing different functions (e.g. C
and N fixation in filamentous cyanobacteria) and survival
in a fluctuating environment. One prominent example is
bacterial persistence, where a typical population contains a
small fraction of slow- or non-growing “persister” cells that
are not killed by antibiotics [3,4]. Cells switch between nor-
mal and persister states in a random, binary (switch-like)
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manner. The ability to resist stress comes at a cost (typically
reduced rates of growth or reproduction). For intermittent
stress, there is an advantage to maintaining heterogeneity
among individuals in a population in terms of tradeoffs be-
tween performance and survival (i.e. an insurance mechan-
ism referred to as bet hedging [3,5]).

For eukaryotic microbes, the budding yeast Saccharomy-
ces cerevisiae (S. cervisiae) is a model organism for stud-
ying individual heterogeneity and aging and longevity
[1,6]. Various mechanisms, including stochastic variabil-
ity in regulatory pathways and production/destruction
of mRNAsS, and deterministic asynchronicity in cell cycle or
replicative age, lead to heterogeneity in protein content and
stress resistance in clonal populations [1,7-12]. For ex-
ample, copper resistance is heterogeneous and related
to cell cycle and replicative age [13]. Intrinsic and in-
duced expression of heat shock proteins and resistance
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is heterogeneous [11,14]. Expression of Tsll, used in the
synthesis of trehalose (an alpha-linked disaccharide of glu-
cose that enhances thermotolerance, reduces aggregation
of denatured proteins and protects against oxidative dam-
age), and heat shock resistance are heterogeneous and
correlated with replicative age [15]. Natural yeast (i.e. not
S. cervisiae) populations were found to have heteroge-
neous resistance to copper, lead and sulfur dioxide, and
this phenotypic heterogeneity is a beneficial and evolvable
trait [16]. Unlike in bacteria, heat shock resistance in yeast
is graded, continuous (vs. binary) and correlated with rep-
licative age (vs. random).

The benefit of random heterogeneous expression of a
stress-response factor has been demonstrated experi-
mentally and computationally for S. cervisiae [8]. Levy
et al. [15] hypothesized that correlating heat shock re-
sistance with age provides an added benefit. The idea is
that older, slower-growing cells are better candidates for
being stress resistant because they contribute relatively
less to the population growth. Is there a fitness benefit
to age-correlated (vs. random) stress resistance?

This hypothesis is explored here using modeling, an
approach that has been applied previously to explore
the role of heterogeneity [5,17]. The general strategy
is to develop a mathematical model that includes the
relevant mechanisms, and then perform numerical
competition experiments to see if the age-correlated
resistance trait is beneficial. Such competition and/or
evolutionary optimization simulations have been used pre-
viously to determine optimal traits/parameters [18-20].
There are many potential model formulations and associ-
ated parameter sets for simulating replication, aging, re-
sistance, etc. (reviewed below). To ensure some degree of
realism, we constrain the model by calibration and com-
parison to relevant observations from the literature. We
use agent-based modeling (ABM, aka individual-based
modeling, IBM), rather than the more common population-
level modeling approach [18-22]. An ABM is appropriate
in this case, because it can resolve the continuous/graded
distribution of various individual properties (e.g., protein
levels, growth rate, resistance), and model outputs can be
compared directly to the individual-based observations
that are used to constrain the model [15,23]. The model
simulates intracellular mechanisms and the cell behavior
emerges (systems biology). Then, it simulates many such
cells and the population behavior emerges (systems ecol-
ogy). This multi-level approach has been referred to as
‘systems bioecology’ [19-21].

We describe the model and compare it to data from
the literature, which shows that it is generally consistent
with the observed patterns. A heterogeneity network is
developed, which highlights the predominant sources
and pathways of resistance heterogeneity. Then we per-
form competition experiments with strains that have
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different Tsl1/Tps3 expression strategies in an environ-
ment with intermittent heat shocks. For conditions with
high severity and low frequency of heat shocks, an age-
dependent bet hedging strategy is most beneficial, which
supports the hypothesis of a fitness benefit of age-
correlated stress resistance.

Methods

Model overview

The model is relatively simple and resolves only those
mechanisms necessary for exploring the hypothesis and
comparison to the relevant data. Yeast cells take up glu-
cose (G, g LY and convert it to biomass (Figure 1). Three
forms of biomass are considered, including structural (71,
g dry cell™), damaged (mp, g dry cell™) and trehalose (1715
g dry cell*). The total biomass (1, g dry cell™*) is the sum
of these components (m = my + mp + my). Structural bio-
mass becomes damaged. A fraction of biomass is synthe-
sized as trehalose. The model tracks the age or number of
divisions in terms of bud scars (nz). A population of indi-
vidual cells is simulated using an agent-based approach.

Biomass growth
A number of metabolism models for S. cervisiae have been
developed ranging from simple Monod-type growth equa-
tions to more detailed kinetic models that resolve intracel-
lular mechanisms up to dynamic/kinetic implementations
genome-scale network reconstructions [24-28].

Here, a relatively simple approach is used, with the
mass balances for the three components:

de
= (1-f) pmx—kqmx (1a)
dt
de
——=kym 1b
a4 (1b)
e N
my
G my mp
Ng
Figure 1 Model schematic. Symbols: G = glucose, my = structural
mass, mp = damaged mass, mr=trehalose mass and ng=number
of bud scars.
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where 4 (day™) is the growth rate, f, is the trehalose syn-
thesis fraction and ky (day’l) is the damage rate. The
growth rate increases with glucose and decreases with
damage:

B G K
H=tme K £°G K + (mp/m)™

(2)

where ,,, (day™") is the maximum growth rate, K, (g LY
is the half-saturation constant for glucose, K, is the half-
saturation constant and n, is the exponent for damage.
The model dynamically simulates the extracellular glucose
concentration considering inflow and washout (for con-
tinuous culture simulations) and uptake by the cells (see
Additional file 1: SI text for details).

Replication
Cell division in S. cervisiae is via the asymmetrical bud-
ding process, where a larger mother cell gives birth to a
smaller daughter cell. With subsequent births, the
mother’s size increases and it accumulates bud scars and
damage (see below). A number of cell cycle and replica-
tion models for S. cervisiae have been developed [29,30].
Here, the model of Vanoni et al. [30] is adopted.
Briefly, two cell cycle phases are simulated, unbudded
and budding. Budding starts at a threshold budding size
(mp), which increases from a specified daughter cell
value (m,,0) by a factor (a,, b, 1) with each generation.
Division occurs at a threshold replication size (m1,),
which is proportional to the budding size (m,=f,,, m,).
The daughter gets the mass synthesized during the bud-
ding phase. The mother gains a bud scar and preferentially
retains the damage (see below). Individual phenotypic het-
erogeneity is introduced by randomizing the budding size.
At birth, the daughter’s budding size is drawn from a glo-
bal truncated normal distribution with specified mean and
coefficient of variation (CV) [31]. A truncated distribution
is used to prevent unrealistic values (e.g., 71, <0). This
process introduces non-heritable phenotypic heterogen-
eity, so values are drawn from a global distribution (vs.
one with the mean based on the mother).

Aging and damage accumulation

Aging in S. cervisiae is due to a number of mechanisms,
including accumulation of extrachromosomal DNA cir-
cles (ERCs) and oxidative damage (e.g., carbonylation) to
proteins [32]. At division, this damage is preferentially
retained by the mother cell, although the ability to do so
diminishes with replicative age [33,34]. In addition, the
mother cell has higher reactive oxygen species (ROS)
and protein damage rates and lower damaged protein
degradation rates [35,36]. Trehalose protects against
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ROS damage to proteins [37]. Several generic models of
aging have been presented [18,34]. Specifically for S. cer-
visiae, Hirsch [38] developed a model where cells accu-
mulate a senescence factor at a constant rate and
partitions it asymmetrically at division. The growth rate
decreases with increasing amount of this senescence fac-
tor. More mechanistic models that explicitly represent
ROS, the damage reaction with a protein (citrate syn-
thase) and repair reaction with a heat shock protein
(Hsp90) have been presented [39].

The present model considers the production of damaged
mass (mp) from structural mass (m1y) in a first-order man-
ner, at a damage rate that increases with age (k; = agng™).
At division, the damage mass is preferentially retained by
the mother, based on a split fraction (s,).

Trehalose synthesis and Tsl1/Tps3 expression

Trehalose serves as storage carbohydrate and stress pro-
tectant [40-42]. Synthesis is highest during the stationary
phase and in response to stress (incl. heat), but trehalose
also accumulates under normal, non-stressed conditions
[42-44]. Trehalose is synthesized by a trimeric protein
complex made up of Tpsl and Tps2, and interchange-
able Tps3 or Tsll [45,46]. Genes involved in trehalose
synthesis are induced by heat shock [46,47]. In addition,
the expression is negatively correlated with growth rate
and has a stochastic component [15,47]. Tsll and Tps3
promoters share a common regulatory element (stress-
responsive element, STRE), but their expression can dif-
fer [9,10,46]. Trehalose (or more generally carbohydrate
storage) has been included in metabolic models of S. cer-
visiae [24,25,48].

In the present model, the trehalose synthesis complex
is represented by Tsll and Tps3, which are assumed to
limit the trehalose synthesis rate (i.e., Tpsl and Tps2 are
assumed to be present in excess). Tsll and Tps3 are con-
sidered separately (vs. the complete synthase complex or
Tpsl), because their expression differs and to allow for
direct comparison to observations [15,46]. The trehalose
synthesis fraction (f;) is a function of the total trehalose
synthesis enzyme concentration (e = ezy; + ezps3):

el
fi :fm,s I(;ls + e;’l;

(3)
where f,,, ; is the maximum fraction, K; (mmol LY is the
half-saturation constant and g is the exponent for tre-
halose synthesis.

Tsl1 and Tps3 are expressed using a set of constant, age-
dependent and stochastic terms. In the model applications,
cells are grown in constant, glucose-replete conditions, so
the effect of growth condition (i.e., stationary phase) on ex-
pression is not included. Cells are subjected to heat shock,
but since the observed resistance was not due to an
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induced heat shock response [15], induction of resistance
by heat shock is not included. The Tsl1 enzyme concentra-
tion (ezy;, mol L) is assumed to adjust rapidly to the dam-
age according to:

mp/m
Krg1 + mp/m

ery1 = |ecTsi1 + €q,Tsi1 Jrrsn (4)
where e, ry; (mol L) is the magnitude of constant ex-
pression, e, 7y; (mol LY is the magnitude of damage or
age-dependent expression, Kry; is a half-saturation con-
stant and f;7y; is a randomization factor. Note that ex-
pression is a function of the combined effect of
constant, age-dependent and stochastic terms, with their
relative contribution depending on the assigned param-
eter values. The randomization factor (f, ;) is varied by
drawing from a global truncated normal distribution
with mean of 1.0 and specified CV, following the same
approach used for my,, (see above). An equivalent for-
mulation is used for Tps3.

Heat shock tolerance and death
Heat causes denaturation of proteins and there are a
number of mechanisms that can prevent this. Trehalose
stabilizes proteins during heat shock [40]. Other factors
include various heat shock proteins, whose intrinsic (i.e.
without heat shock) expression is also heterogeneous
and correlated with heat shock resistance [11,14].
Mortality by heat shock is simulated using a determin-
istic approach [8]. Specifically, the applied heat shock se-
verity (H,, arbitrary units) is compared to the tolerance
of the cell (H,), which increases with the trehalose mass
fraction (m / m):

 mr/m
Ky +mr/m

¢ (5)
where Kj, is the half-saturation constant for heat shock
tolerance. Kj, is the fraction of trehalose required to
achieve a tolerance of 0.5. When a heat shock is applied,
all cells with H,< H, die. H, can be adjusted to reflect
different experimental conditions.

Additional mechanisms of heterogeneity

The model includes a number of deterministic sources of
heterogeneity, like the uneven split of damage among
mother and daughter at replication. Also, the budding
mass threshold (m1,,) and Tsll and Tps3 expression fac-
tors (f, 7 and f;7,,s3) are varied stochastically, as described
above. However, in reality there are numerous other
mechanisms (e.g., stochastic expression of all genes) that
contribute to heterogeneity in cellular processes [1,7-12].
To account for this, the maximum growth rate (¢,,,) and
damage exponent (n,) parameters are also randomized
(following the same approach used for 1, ).
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Agent-based modeling of population

The model simulates individual yeast cells using an
agent-based approach [18-22]. Each agent stores the cell
state variables (e.g., my, see Figure 1) and those parame-
ters that are varied at the individual level (e.g., ). For
continuous culture simulations, the model includes sto-
chastic washout of cells from the reactor (see Additional
file 1: SI text for details). Differential equations (e.g.,
Eq. 1) are solved using an explicit numerical integration
method. The model is implemented in the IAM frame-
work [19,20], and the source code is available from the
corresponding author.

For some experiments the model explicitly simulates
each individual cell. This includes the microcolony ex-
periments that have ~10° colonies of up to ~100 cells
for a total of 10 cells (e.g. Additional file 1: Figure S1B).
However, for liquid cultures with larger populations, in-
cluding the competition experiments, this is not feasible.
For example, a 300-mL culture with a cell density of 2.6
x 10® cells mL™ contains 7.9 x 10" cells. Using the
present model, simulating that many cells for 20 days
would take approximately 15 years of CPU time and
18 PB of RAM memory. As is common in microbe ABMs,
for liquid culture, the model simulates super-individuals,
which are representative of a number of real individuals
[21]. Minimum/maximum numbers of agents are speci-
fied, and when the number of agents drop/rises below/
above this, agents are split/combined (see Additional file 1:
SI text for details). The number of agents, or the com-
putational resolution, is set sufficiently high so that the
model produces robust and reproducible results over
multiple runs with different seed values for the random
number generator.

This application is especially challenging from a compu-
tational perspective, because of the focus on small frac-
tions of the population. For example, in one experiment
by Levy et al. [15], 0.1% of the population was sorted out
using flow cytometry and the growth rate distribution of
that fraction was computed (Additional file 1: Figure S1I).
In order for the model to adequately resolve the hetero-
geneity of such a small fraction of the population, it needs
to have a very large number of agents.

Simulations performed

The model was constrained by calibration and compari-
son to relevant observations from the literature. Several
parameters were calibrated within the available literature
range with the help of an automated optimization rou-
tine (see Additional file 1: SI text, Table S1, Figures
S1&2). Model simulations followed the actual experi-
mental protocols as described in the respective literature
references, which could be quite involved. For example,
one experiment by Levy et al. [15] included growing cells in
liquid suspension, sub-sampling based on Tsl1 expression,
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growing again in liquid suspension, randomly sub-
sampling, growing as microcolonies, and estimating the
growth rate of each microcolony based on the change in
colony area (Additional file 1: Figure S1J). The resulting
calibrated model is then used without any further changes
to explore the underlying mechanisms and fitness effect of
heterogeneous, age-correlated heat shock resistance.

To understand how heterogeneity is produced and
how it propagates through the population, we developed
a heterogeneity network (Figure 2F). The nodes in the
network represent individual state variables (e.g. mp),
calculated variables (e.g. ¢#) and processes (e.g. unequal
split of damage, node DAM), and the links represent
causal relationships. For example, DAM causes heterogen-
eity in mp, which in turn causes heterogeneity in m (via
mass summation, node m), # (via Eq. 2), and ezy; and egy,g3
(via Eq. 4). By turning off the heterogeneity at a node or
link in the network and examining the resulting reduction
in heterogeneity at a downstream node, the heterogeneity
can be mapped onto the network (see Results section).

To explore the role of the age-correlated resistance trait
on the fitness of the yeast, numerical (ie. simulations)
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competition experiments were performed. Cells were
grown in a glucose-limited chemostat with constant dilu-
tion rate (D = 0.15 h™), a set-up similar to the one used in
a previous experimental study that examined the effect of
mild heat shock (28 >36°C) on S. cervisiae growth rate
and gene expression [47]. The culture was subjected to
heat shocks at specified heat shock severity (H,) and fre-
quency (F, h'Y). A number of model strains with different
Tsl1/Tps3 expression parameters were developed. For
Tsll, e.ry; controls constant expression, e,ry; controls
age-dependent expression, and f,7y; ¢y controls stochasti-
city. Tsl1 and Tps3 are considered separately in the model
to allow for comparison to data (Figure 2), but their effect
on trehalose synthesis is identical (Eq. 3) and a strain with
a high Tsll parameter (e.g., e.7y;) behaves the same as a
strain with an equivalently high Tps3 parameter (i.e., e
Tps3)- Therefore, the Tsll and Tps3 parameters were varied
together (e.g., the ratio e. 73 / €,7; is held constant). We
created 1,000 model strains, with 10 variants for each Tsl1
parameter. Doing a single simulation with all strains was
not feasible. Therefore, a tournament-style competition was
used. In each round, 10 strains were randomly selected and
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Figure 2 Model-data comparison and heterogeneity source and pathway analysis. (A) Damage (mp/m) vs. age (ng). Data from [33]. (B) Tsl1
expression (ery;) distribution of cells. (C) Age (ng) vs. Tsl1 expression (ery;). (D) Heat shock survival of various Tsl1-sorted fractions. Data from [15]. “a.u.” is
arbitrary units. (E) Distribution of heat shock tolerance for base case and various diagnostic simulations (e.g. “dam” has equal damage partitioning,
s4=0.5). (F) Heterogeneity network. Line weight indicates contribution of node or link to overall heterogeneity in heat shock tolerance (based on
variance of normalized H,, e.g., panel E). For details of experiments used to generate the data the reader is referred to the source publications.
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placed in competition. The winner of each match advanced
to the next round and the process was repeated until one
strain was left. For each condition (H,, F}), the optimal
bet hedging strategy/parameters emerged as the winner.
The experiment is implicitly constrained by the metabolic
cost of trehalose synthesis (reduced synthesis of structural
biomass, Eq. 1a), which is traded off against the benefit of
higher heat shock survival.

Results and discussion

Calibration and comparison to data

The model was calibrated to observations from the
literature with the help of an automatic calibration
routine. The database is comprised of 15 datasets
[9,10,15,33,41,43-45,49]. The reader is referred to the
original publications for experimental protocols and de-
tails. This database characterizes the relevant features of
the system, including the distribution of growth rates,
damage accumulation with age, Tsl1 and Tps3 expression
levels, distribution of Tsl1 expression, age vs. Tsll expres-
sion, age distribution for all and top 1% of Tsl1 expressing
cells, Tsl1 expression vs. growth rate, growth rate distribu-
tions for all, top 1% and 0.1% of Tsl1 expressing cells, tre-
halose content, trehalose in wild type vs. Tsll knockout,
survival vs. Tsll expression, and survival vs. growth rate
for wild type and Tsll knockout strains. Discussion of all
datasets is provided in the SI and a selected subset are dis-
cussed here.

Oxidative protein damage (carbonyl levels) was ob-
served to increase with age (bud scars), and the model
reproduces this general pattern (Figure 2A). The obser-
vations suggest a step-wise increase whereas the model
exhibits a more linear shape. The reason for the discrep-
ancy is unclear. The observations are from a single study
and it would be useful to obtain additional observations
to confirm the shape. Damage mass increases with age
due to preferential inheritance by the mother and an in-
crease of damage rate with age. The expression of Tsll,
observed with flow cytometry and green fluorescent protein
(GFP) fused to Tsll, was quite heterogeneous (Figure 2B).
The modeled Tsl1 distribution was not as spread out as the
observations, for example, the data extended into the nega-
tive range (presumably a measurement error at low Tsll
levels), whereas the model restricted Tsll to the positive
values. The heterogeneity in Tsll is a function of the sto-
chastic component and the amount of Tsl1 expression that
is damage correlated (Eq. 4). Applying the bud scar stain
WGA-TRITC and passing cells through the flow cytometer
showed that Tsl1 expression increased with age (Figure 2C).
The model also shows an increase. However, for an un-
known reason it over-predicts the age in the 0.03 Tsl1 bin.
When Tsl1-sorted sub-populations were heat shocked, sur-
vival correlated positively with Tsl1 expression (Figure 2D).
Again, the model reproduces the general increase, but it
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differs in the 0—0.1% Tsl1 bin. This narrow bin includes the
fewest cells and is most susceptible to stochastic variability
(observations and model). Overall, the model does not
capture all features of the data, but it reproduced the
main patterns, including an increase of damage with
age, heterogeneous Tsll expression, and correlation of
age and survival with Tsl1 expression.

Source and pathway of heterogeneity

We constructed a heterogeneity network (Figure 2F),
which defines how heterogeneity can be produced and
propagate through the population. In the present model,
all heterogeneity originates at replication. The model does
not consider other sources of heterogeneity, like stochastic
differentiation at other times (i.e. in between replication
events) or heterogeneity in the environment. There are
a number of deterministic and stochastic sources of
heterogeneity associated with replication (grey nodes in
Figure 2F). For example, the scarring process produces
heterogeneity in bud scars (1) in a deterministic manner,
while the expression of Tsll is varied randomly (f, 7).
Despite the numerous sources of heterogeneity, replica-
tion does not completely randomize or “reset” the cells,
and the model allows for inter-generation memory. For
example, bud scars and damage — and thus also the
growth rate — are heritable (Additional file 1: Figures
S1A&S3).

Where does the heterogeneity in survival originate?
Sequentially removing sources and examining the result-
ing reduction of heterogeneity in heat shock tolerance
showed that the scarring and unequal division of damage
processes are the predominant sources (Figure 2E). But
there are many ways the heterogeneity can go from these
sources to heat shock tolerance. How does it propagate
through the network? Systematically eliminating hetero-
geneity at links and nodes in the network (e.g., use
population-average es in Eq. 3) allowed us to map the
heterogeneity onto the network. This showed that het-
erogeneity travels along multiple pathways, but predom-
inantly from scarring to damage to Tps3 expression to
trehalose and heat shock tolerance, a deterministic path-
way that leads to age-correlated stress resistance.

Competition experiments

The model did not capture all features of the data, but it
reproduced the major patterns observed in the relevant
datasets. It was then used as an experimental system to
explore the hypothesis outlined in the introduction. To
determine the best Tsl1/Tps3 expression strategy we per-
formed tournament-style competition experiments be-
tween 1,000 strains with different expression parameters
(e 511> €asin Jrsiz,cv) in continuous culture with intermit-
tent heat shocks. Figure 3A shows the results from one
simulation at intermediate heat shock severity and
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Figure 3 Numerical competition experiments. (A) Example of
one simulation at intermediate heat shock severity and frequency
(H,=0.7, F,=0.14 d). Cell density of 10 competitors. Abrupt drops
in concentrations correspond to heat shocks. (B) Summary of
tournament-style competitions. Optimal Tsl1/Tps3 expression parameters
for a number of (B1) heat shock severities (H, varies, F,=0.14 d) and (B2)
frequencies (H, = 0.7, F,, varies). Constant: e.ry; in pM, Age-dependent:
g7 IN UM, Stochastic: £z / 10. Symbols are mean +/— one standard
deviation of ten replicate experiments.

frequency. One strain clearly outcompeted the others over
the course of the experiment.

We performed a number of experiments at various
heat shock severities (H,) and frequencies (Fj), ranging
from no heat stress (H, = F;, =0) to the maximum heat
stress the yeast can survive (Figure 3B). When no heat
shocks were applied, the winning strain had no constant
or age-dependent terms. It did have a stochastic term,
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but this is simply due to the neutrality of the parameter
when constant and age-dependent terms are zero (i.e.,
then the stochastic parameter does not affect the expres-
sion, Eq. 4). At lower heat shock severities, the winning
strategy was to express Tsl1/Tps3 in a constant manner
without heterogeneity (Figure 3B1). It only takes a small
amount of trehalose to survive these heat shocks and it
is best to have all cells synthesize this amount. Adding
heterogenity would result in some cells being killed by
heat shock, which would not be beneficial, a finding
consistent with previous studies [8]. Since heterogeneity
cannot be avoided with age-dependent expression, con-
stant expression is the better strategy in this case. At
higher severities, the amount of trehalose required to
survive the heat shocks becomes larger and a bet hedg-
ing strategy becomes beneficial. That is, the average
amount of trehalose is below what is required to survive
the heat shocks, but it is heterogeneous and some cells
have sufficient trehalose to survive the heat shocks, and
this prevents the population from being wiped out. Under
such conditions, the model predicted that age-dependent
expression is better. This can be explained, as suggested in
the Introduction, by the fact that the older cells contribute
less to the population growth, and eliminating them is less
detrimental to population growth (Additional file 1: Figure
S11). If age-dependent expression is excluded (e, zy; = 0),
the winning strain has constant and stochastic expression
terms (Additional file 1: Figure S10). The heterogeneity in-
troduced through the deterministic aging process is sub-
optimal and it is beneficial to add more via the stochastic
term. At lower heat shock frequencies, the winning
strategy was age-dependent bet hedging, whereas at
higher frequencies constant expression without hetero-
geneity was better (Figure 3B2). At lower frequencies,
the growth period in between the heat shocks is rela-
tively long and reducing the average trehalose produc-
tion (as is achieved using a bet hedging strategy) is
beneficial. At higher frequencies, a bet hedging strategy
is not advantageous, because too many cells are lost
through the frequent heat shocks.

These experiments were performed with a model de-
signed with equations based on our current understand-
ing of the underlying mechanisms, a parameter set that
is generally consistent with the literature and main pat-
terns consistent with observations. However, we cannot
rule out that there is not another model formulation (i.e.
different equations) or parameter set that produces an
equal-quality calibration but a different result or conclu-
sion about the fitness effect of age-correlated heat shock
resistance. This is a common problem in model predic-
tion and has been referred to as “equifinality” [50], and
it can be addressed to some extent by varying model for-
mulations [18,34] and/or parameters [29]. The present
model is computationally very demanding. Nonetheless,
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we used an automated optimization routine that allows
for alternate parameter values, and two runs produced
essentially the same parameter set, which provides some
additional support for the robustness of our conclusions.

Conclusion and outlook

This study explored the ecological role of heterogeneous,
age-correlated heat shock resistance in S. cervisiae. A sim-
ple model was constructed based on our current under-
standing of the underlying mechanisms, and comparison to
relevant data shows it is consistent with observed patterns.
Competition experiments with strains that have different
stress protectant synthesis strategies shows that, for high
severities and low frequencies of heat shock, an age-
dependent bet hedging strategy is best. This supports the
hypothesis that age-correlated resistance is more beneficial
than random resistance. Although the model is specific to
heat shock resistance in S. cervisiae, trehalose is produced
by many different organisms and also protects against other
forms of stress (e.g., ethanol, [41]), so our results have
broader relevance. However, there are also cases where
resistance is negatively correlated with age (i.e., younger
cells are more resistant), like Sodlp-mediated copper
resistance [13], so these results cannot be generalized to
all types of stress.

The finding that it is advantageous for older cells to in-
vest in increasing stress tolerance has implication for un-
derstanding aging and longevity- two very different things,
with different selective forces acting [6]. Longevity is a
highly adaptive trait and it is generally considered that
genes promoting longer lifespan do so by improving som-
atic resistance in unfavorable conditions [6]. Our results
provide a clear example of how such a mechanism could
operate.

Our model was designed specifically for exploring the
role of age-correlated heat shock resistance in S. cervisiae.
For that purpose it was kept as simple as possible, while still
including the relevant mechanisms. This naturally limits
the model’s applicability to other questions, although it
should be useful for exploring other features related to
aging, heterogeneity and stress resistance. For example,
with minimal changes (i.e. Eq. 4), the present model could
be used to predict expression of other proteins. The model
can also serve as a stepping stone for further model deve-
lopment. A lot more is known about the various mech-
anisms involved in the problem and this knowledge is
sufficient to support the development of a more de-
tailed model. It would be interesting to bring in more
mechanistically-detailed models of gene transcription
and expression noise [7,8,12], more detailed and/or
genome-scale metabolism [24,26-28] and cell cycle
control [29]. Sub-genome scale combined signaling, gene
expression and metabolism models have been developed
[51]. It seems that several pieces are in place to support the
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development of such a model, which would require a large
community effort (as was done for the latest metabolic net-
work reconstruction, [27]), but it would be worth it.

This study combined individual-based observations (IBO)
and modeling (IBM) to understand mechanisms underlying
population heterogeneity, and the effect on fitness [23].
Individual-based observation and experimental tech-
nologies are advancing rapidly and are generating large
amount of novel data [15,52]. These data are different
from traditional population-level observations, which
were amenable to analysis using traditional population-
level models, and they require new methods and models.
Our study illustrates the utility of combining IBM and
IBO. The IBOs of Levy et al. [15] were used to constrain
the individual-level processes in the IBM. The IBM, in
turn, put the IBOs into ecological context.

This paper presents the use of a multi-scale modeling
approach to investigate the role of an intracellular mech-
anism in the ecological fitness of an organism. Covering
multiple levels of organization is a general problem in
the biological sciences. Several systems approaches have
been developed to address this challenge [53,54]. The
approach used here, “systems bioecology”, combines sys-
tems biology and systems ecology [19-21]. The idea is
conceptually quite simple. First, the intracellular states
and mechanisms of microorganisms are explicitly simu-
lated (systems biology). Then, whole populations of these
individual microbes are simulated directly using agent-
based modeling (ABM), including their interaction with
the environment (systems ecology). This general approach
may be applicable to other questions involving the role of
intracellular mechanisms at the ecosystem scale.

Additional file

Additional file 1: Additional model details. Additional discussion of
model results.
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