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Abstract

Background: MicroRNAs (miRNAs) are a large class of non-coding RNAs with important functions wide spread in
animals, plants and viruses. Studies showed that an RNase IIl family member called Drosha recognizes most
miRNAs, initiates their processing and determines the mature miRNAs. The Drosha processing sites identification
will shed some light on both miRNA identification and understanding the mechanism of Drosha processing.

Methods: We developed a computational method for Drosha processing site predicting, named as DroshaPSP,
which employs a two-layer mathematical model to integrate structure feature in the first layer and sequence
features in the second layer. The performance of DroshaPSP was estimated by 5-fold cross-validation and measured
by ACC (accuracy), Sn (sensitivity), Sp (specificity), P (precision) and MCC (Matthews correlation coefficient).

Results: The results of testing DroshaPSP on the miRNA data of Drosophila melanogaster indicated that the Sn, Sp,
and MCC thereof reach to 0.86, 0.99 and 0.86 respectively.

Conclusions: We found the Shannon entropy, a chemical kinetics feature, is a significant feature in telling the true
sites among the nearby sites and improving the performance.

Background
MicroRNAs (miRNAs) are a large class of ~ 22nt long
non-protein-coding RNAs that post-transcriptionally
interfere the expression of their target genes by binding
to the 3’-untranslated regions (3’'UTR) [1]. MiRNAs
were found to degrade or suppress the expression of
great amount target genes [2,3] in plants, animals and
viruses [4], which play important roles in embryo devel-
opment, cell growth and tissue differentiation, apoptosis
and proliferation, morphogenesis and so on [5-8].
Drosha is a Class 2RNase III enzyme. In most animals,
except a few miRNAs which are produced by the miR-
tron pathway [9], it is Drosha that cleaves the long pri-
mary-miRNAs (pri-miRNAs) to precursor miRNA (pre-
miRNA) hairpins of ~70nt in length [10], which initiates
miRNA processing [11,12]. The Drosha processing step
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determines the sequence regions of pre-miRNAs for the
sequentially biological process to produce mature miR-
NAs by Dicer. As Dicer selects cleavage sites by measur-
ing a set distance from Drosha processing sites [13],
Drosha is considered to be the key of making the deter-
mination of the mature miRNAs. Furthermore, the
Drosha process also determines the efficiency and speci-
ficity of most miRNA expression [14]. Therefore, accu-
rate identification of Drosha processing sites will
facilitate the recognition of miRNAs and the mechan-
isms understanding of miRNA biogenesis.

The methods in both experimental and computational
ways have been employed to identify the Drosha proces-
sing sites. Kadener et al. identified 137 Drosha target
sites from pri-miRNAs at the genome scale of Droso-
phila experimentally with the tiling microarray technol-
ogy [15]. Computational method is another option for
quickly and low-costly identifying Drosha processing
sites. The ‘Microprocessor SVM’ is a computational pro-
gram used to identify human Drosha processing sites
with the feature set formed by structure information
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features and base pair information features of pre-
miRNA hairpin. However, the accuracy of ‘Microproces-
sor SVM’ predicting known 5’-Drosha processing sites
in human is approximately 50% [16]. One of the possi-
ble reasons of the low accuracy may be the missing of
some chemical kinetics features, such as the Shannon
entropy of pre-miRNA folding.

In this study, we introduced a computational method
named DroshaPSP that integrated the Shannon entropy
[17] into the feature set to search Drosha processing
sites on pre-miRNA hairpin structure. The Shannon
entropy is verified to be an significant measure in non-
coding RNA sequences (ncRNAs) folding, especially
miRNA [18]. It is widely accepted that the pri-miRNA
folding into hairpin structure is required for the Drosha
processing, so we naturally infer that the Shannon
entropy is important for Drosha processing step. As we
expected, our Drosha processing site predicating pro-
gram, called DroshaPSP, gave SN nearly 0.91 while SP
was over 0.99, and the MCC reached 0.94. This result
confirmed our hypothesis that chemical kinetics fea-
tures, in particular, the Shannon entropy, are import for
Drosha processing.

We have reported our research results to BIBM 2012
[19]. In this supplement, we are more specific on the Meth-
ods that how we established the two-layer classifier based
on SVM and discuss the irreplaceability of the first layer.

Methods

Data

Drosophila melanogaster was chosen as the study spe-
cies due to its small genome.

The Drosophila melanogaster miRNA annotation data,
including the sequences of pre-miRNA, the structure
data of miRNA hairpin, the sequences of mature
miRNA and the sequences of miRNA star were down-
loaded from miRBase (http://www.mirbase.org/) [4],
which collects the comprehensive annotation informa-
tion of Drosophila melanogaster miRNAs. It should be
noted that the miRNAs produced by miRtron pathway
were not considered in this study, because they are not
processed by Drosha.

The sequence data of Drosophila melanogaster gen-
ome were obtained from Ensemble database [20].

Predicting steps of DroshaPSP

A two-layer prediction model is used in DroshaPSP to
predict the processing sites of Drosha, as shown in Fig-
ure 1. For a given gene sequence, DroshaPSP first deter-
mines the hairpin structure with the prediction model
HairpinSVM, and then identifies the Drosha processing
sites of the hairpin structure with the prediction model
DroshaSVM, which integrates the structure, sequence
and entropy information.
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HairpinSVM: Pre-miRNA like hairpin structure
determination

HairpinSVM is a classifier that was constructed based
on the support vector machine (SVM) [21] used for tell-
ing the pre-miRNA like hairpins which are the potential
substrates of DroshaSVM. We selected the most widely
used radial basis function kernel (RBF kernel) for Hair-
pinSVM. The RBF kernel of SVM [22] was implemented
with the package LIBSVM [23].

As shown in Figure 2A, HairpinSVM firstly mapped all
the pre-miRNA sequences (70~100nt) obtained from
miRBase to the Drosophila melanogaster genomic
sequences by Blast [24], and extended to 180nt. These
180nt long sequences constituted the sample database
(the Sample DB). For each sample in the Sample DB, all
of its subsequences longer than 50nt are inputted to
RNAfold software [25]. The hairpin structures returned
by RNAfold were candidates for the HairpinSVM. In the
case that the subsequences from a certain sample give
out the same folding structure, only the longest one was
retained. In brief, all the possible structures output by
RNAfold were considered as pre-miRNA candidates. In
the candidate dataset, the ones same with the corre-
sponding pre-miRNA structure given out by miRBase
formed the positive training set, others constituted nega-
tive training set. Finally we get 641 positive training sam-
ples and 3024 negative training samples for HairpinSVM.

In HairpinSVM, 12 structure features were included to
tell the pre-miRNA like hairpin structures with the best
possibility (Table 1).

DroshaSVM: Drosha processing site classifier

The output of DroshaSVM is the probability for each
candidate of Drosha processing site. The candidates of
Drosha processing sites refer to the sites at the 5’-stems
of hairpins outputted by HairpinSVM (Figure 2B). Simi-
lar to Microprocessor SVM, we defined that the true
Drosha processing sites are the 5’-ends of mature miR-
NAs and miRNA stars in 5’-stem of pre-miRNA hairpin
annotated by miRBase. If miRBase gives no such annota-
tion for a pre-miRNA hairpin, we presumed that 3’-ends
of mature miRNAs gave a 2nt overhang to relative 5’-
true Drosha processing site. For DroshaSVM training,
we collected 641 positive samples with experimentally
validated from miRBase database. The negative sample
set is formed by other 30,873 sites in 5-stems of known
pre-miRNAs.

Like the HairpinSVM, DroshaSVM also adopt RBF
kernel for prediction model. Besides the normally used
features, such as the base pair and its probability, the
length from the loop, we also integrated the entropy fea-
tures into DroshaSVM (Table 2). The Shannon entropy
is a Dynamical feature, which has been verified to be an
significant measure in non-coding RNA sequences


http://www.mirbase.org/

Hu et al. BMC Systems Biology 2013, 7(Suppl 4):54
http://www.biomedcentral.com/1752-0509/7/54/54

Page 3 of 9

Training
HairpinSVM SVM model
training = =i
e RBF korngl

SVM modei‘
RBF kernel

{ Result

\.

Predicting Drosha
processing sites

J

processing sites.

Figure 1 The system architecture of DroshaPSP. The DroshaPSP is composed of two SVYM based classifiers, called HairpinSVM and DroshaSVM
respectively. For a given input sequence, it is first folded and picked by HairpinSVM. If it is selected, the DroshaSVM is applied to predict Drosha

(ncRNAs) folding, especially miRNA. The scaled values
of the features were input to SVM model training.

Estimating the performance

We applied 5-fold cross-validation test on both predic-
tion models. In brief, both the positive and negative
samples are firstly divided into 5 folds randomly. The
classifier is then trained with data from 4 folds and
tested on data from the rest one fold in turn. According
to the results of 5-fold cross-validation, five widely used
measures are used to estimate the performance of both
HairpinSVM and DroshaSVM, which are: ACC (accu-
racy), Sn (sensitivity), Sp (specificity), P (precision) and
MCC (Matthews correlation coefficient). The measures
are defined as follow:

TP + TN
ACC =
TP + FP + TN + EN
P
SN =
TP + FN
TN
P=
TN + FP

TP
" TP + FP

TP x TN — FN x FP

MCC =
V(TP + EN) (TN + FP) (TP + FP) (EN + FN)

where TN, TP, EN and FP respectively represent the
counts of true negative, true positive, false negative,
false positive. Unusually, the MCC, instead of the
ACC, is used to estimate the overall performance
and determine the default threshold due to the unba-
lanced positive and negative training sets [26].

To estimate the classifiers comprehensively, the recei-
ver operating characteristic curve (ROC curve) is used
to present the performance intuitively.

The DroshaPSP program was tested by the testing
dataset and the performance is accessed also by ACC,
SN, SP, P and MCC.

Results

We developed a program called DroshaPSP to automati-
cally identify the Drosha processing sites from the given
sequence based on SVM method. For a given sequence,
it was first told by HairpinSVM if it is a pre-miRNA-
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Figure 2 HairpinSVM and DroshaSVM. (A) The flow chart of HairpinSVM: for each pre-miRNA in miRBase, it is first mapped to the genome of
Drosophila melanogaster and extended to 180nt. These 180nt sequences are collected into the Sample DB. For each sample in the Sample DB,
all of its subsequences longer than 50nt are folded by RNAfold. After elimination of redundancy folding results, the ones same with the structure
in miRBase are assembled in the true training set, other hairpin structures are assembled in false training set. (B) The flow chart of DroshaSVM:
for each pre-miRNA hairpin structure, all the sites of 5 arm are accepted as Drosha processing site candidate, the true processing sites are based
on miRBase annotation. Other sites compose false training set.
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Table 1 The features used in HairpinSVM

ID Name Description

1 Length The length of the sequence

2 Loop_length The loop size of hairpin structure

3 Stem_length The stem length of hairpin structure

4 Pair The number of base pairs in folding result

5 Pair_frac The fraction of paired base in sequence

7 Insert_count The number of bulges in the folding structure output by RNAfold

6 Insert_frac The average length of bulges in sequence

8 Insert_count_frac The ratio between the nucleotides in bulges and those in the sequence

9 Mfe The minimal free energy output by RNAfold

10 Ensemble_fe The free energy of the thermodynamic ensemble

11 Ensemble_fq The probability of this single structure in the Boltzmann weighted ensemble of all structures.
12 Ensemble_div The ensemble diversity is the average base-pair distance between all structures in the thermodynamic ensemble.
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Table 2 The features used in DroshaSVM
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ID Name Description

1 Loop_Distance Distance from processing site candidate to loop of the hairpin structure.

2~11 Structure Structure description of the candidate site and 9nt sites forward are paired or not.
12~21 Base The base types of the candidate site and 9nt sites forward.

22~31 Probability The base pairing probability of the candidate site and 9nt sites forward.

32~41 Entropy The Shannon entropy of the candidate site and 9nt sites forward.

like hairpin structure. If it’s predicted as a positive sam-
ple by HairpinSVM, then the DroshaSVM determined
whether there were Drosha processing sites and where
they would be.

Performance of the classifiers

We used radial basis function kernel for both the Hair-
pinSVM and DroshaSVM, then tested them by 5-fold
cross validation. The HairpinSVM was trained by the
training dataset with 641 positive samples and 3024
negative samples. The HairpinSVM gave out excellent
performance with the parameters nu = 0.121 and
gamma = 64, the MCC reached to 0.882, while SN was
0.867, SP increased to 0.988, the ACC and P were 0.967
and 0.938. The ROC curve is shown in Figure 3A. The
AUC of ROC curve for the HairpinSVM is 0.964. For
the DroshaSVM, the size of true training set and false
training set were 641 and 30873. The DroshaSVM gave
out the performance that with SN = 0.908, SP = 0.999,
the MCC reached 0.944 and the ACC was 0.998, the
value of P was 0.983, MCC 0.944. The ROC curve of
DroshaSVM performance is shown in Figure 3C. The
AUC under the ROC curve represent the performance
of DroshaSVM is 0.974. Because of the unbalanced
training dataset, the MCC value to different threshold of
HairpinSVM and DroshaSVM are shown in Figure 3B
and Figure 3D, which indicate that the performance of
HairpinSVM and DroshaSVM were stable. The test
results suggested that the HairpinSVM and DroshaSVM
gave the reliable results of pre-miRNA hairpin structure
and Drosha processing sites prediction.

Performance of the DroshaPSP program

For the whole prediction program testing, we used all
miRNAs of Drosophila melanogaster in miRBase version
18.0 as the testing set. The test showed that SN was
0.859 while SP reached 0.999, the value of ACC and P
were 0.998 and 0.870. The comprehensive measurement
MCC achieved 0.864.

Estimating the importance of the features

It is meaningful for us to estimate the influence of each
feature to the SVM classifiers, so that we could figure
out that the importance of each feature and get a better
understanding of the miRNA maturation. To this aim,

the F-score method is applied. F-score is an effective
method to estimate the discrimination of two sets.
Given training vectors xi, k = 1, ..., m, the number of
positive and negative instances are marked as n+ and n-
, respectively, then for the ith feature, its F-score is cal-
culated as:

2
—x)

Zk 1 (xkj "(7))

() —xi) + (x: -

F()
1 N (0.2
IDFCYEE DN

2

where x;, x;*), x;(7) are the average of the ith feature
of the whole, pos1t1ve, and negative data sets, respec-
tively; xk *and Xk ) are the ith feature of the kth positive
and negative instance. The larger the F-score is, the
more likely this feature is discriminative.

The Figure 4A and Figure 4B present the F-score of
each feature used in HairpinSVM and DroshaSVM
respectively. The F-score of the feature stands for its
contribution to the classifier. We can see in Figure 4A
that the energy features, including the free energy of the
thermodynamic ensemble and the minimal free energy,
are the most effective features for pre-miRNA like hair-
pin selection. The features of stem structure took the
second place, such as pair, length, and stem length.
Other structure features of stem which impact the bal-
ance of the 5" stem and 3’ stem, such as the number of
bulges in the folding structure and the fraction of paired
base in sequence, only contributed a little to Hair-
pinSVM. According to Figure 4A, the loop structural
features are less important than those features about
stem. For DroshaSVM, the F-scores of all the used fea-
tures are as showed in Figure 4B. Unexpectedly, the F-
score of the base types is low in all the sites we selected.
These facts suggest that the base types are not so
important, and the stability and probability of the base
pairs of these sites are effective features for Drosha pro-
cessing site prediction. We found that the region from
position 3 to position 9 has higher F-score, which may
be the functional positions in Drosha process. However,
different features have specific high F-score regions. The
entropy got highest F-score in position 5 and 6, the base
pairing probability and structure got relatively higher
scores, especially the probability of position 8 and 9. In
addition, all the features of candidate sites got low F-
scores. The explanation for this observation may be that
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Figure 3 The performance of HairpinSVM and DroshaSVM. (A) The ROC curve for HairpinSYM with the AUC = 0.964. (B) The MCC with the
valve curve of HairpinSVM. (C) The ROC curve for DroshaSVM with the AUC = 0.974. (D) The MCC with the valve curve of DroshaSVM.

the processing sites themselves have little to do with the
Drosha processing site determination.

The Shannon entropy affects the Drosha process

As far as we know that the Shannon entropy is used in
the Drosha processing site identification for the first
time. The Shannon entropy is a powerful chemical
kinetics feature which has been proved to be effective in
ncRNA folding [18]. According to the F-score analysis
result (Figure 4), the traditional features probability and

structure information got high F-score, the Shannon
entropy showed effect that should not be ignored. The
F-score of the Shannon entropy were higher than the
information of base pair in candidate site and sites for-
ward. Once we removed the Shannon entropy, the mod-
ified feature set gave out the performance that the AUC
under the ROC curve of DroshaSVM decreased 9%
(AUC = 0.886).

We did a survey on he scores calculated by
DroshaSVM with the feature set included or removed
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the Shannon entropy in the region of 3nt downstream
and upstream to the true Drosha processing sites. The
Figure 5 is the histogram that shows the average score
calculated by DroshaSVM of the sites with different dis-
tance to true Drosha processing sites in both cases. The
figure clearly shows that the average score of true
Drosha processing sites is much higher than the sites
nearby while applying the feature set included the Shan-
non entropy, and there is no significant difference
between the sites with different distance from the true
Drosha processing sites. If the feature set without the
Shannon entropy is used, the average score of neighbor-
ing sites within 2nt showed a remarkable increase
depending on distance from true processing sites.

These experiments demonstrated that the feature
Shannon Entropy is a significant feature to tell Drosha
processing sites and indicated that the Drosha process is
influenced by the chemical kinetics of pre-miRNA
folding.

Discussion and conclusion
The precise detection of Drosha processing sites is a
crucial procedure for miRNA identification and the
revealing of miRNA maturation. In this study, we pro-
posed a two-layer prediction model named DroshaPSP
to identify Drosha processing sites by combining the
sequence and structure information, and the evaluation
results show that our method can achieve high predic-
tion accuracy.

In our model, a novel dynamical feature was intro-
duced, Shannon entropy, which is helpful to distinguish

the true processing sites from the ones that nearby. In
the previous study, the true processing sites and the
neighboring sites within 2nt are indistinct due to the
similar scores assigned by their Microprocessor SVM,
which led to a serious problem in predicting Drosha
processing site. Finding the features that can sufficiently
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Figure 5 The average DroshaSVM output score with and
without the Shannon entropy. The blue and red histograms
present the average scores of true Drosha processing sites and 3nt
upstream and downstream sites given by DroshaSVM using the
feature sets included Shannon entropy and not.
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characterize the genuine Drosha processing sites from
the neighboring ones is our prime interest. Of this pur-
pose, we brought in the Shannon entropy, which is a
novel dynamical feature. As showed in Figure 5, with
the Shannon entropy, DroshaPSP can pinpoint the true
processing site from the neighborhood clearly.

Drosophila melanogaster was chosen as our study spe-
cies, due to its extended annotation of Drosha proces-
sing sites on miRNAs. We did not compare our
DroshaPSP with Microprocessor SVM, because the
parameters of latter method were derived from human
miRNAs, which were reported to be quite different from
Drosophila melanogaster miRNAs, such as different
cleavage partners of Drosha in human and Drosophila.
Thus, the direct comparison of two prediction models
derived from these two distinct species would bring on
unfair results.

It is noteworthy that the purpose of HairpinSVM, the
first layer of DroshaPSP, is not to scan the pre-miRNA
from the given sequence, but to select the pre-miRNA
like hairpin structure from all the RNA folding results
of the given sequence. So, HairpinSVM cannot be
replaced by other pre-miRNA predicting program. In
order to clearly classify the pre-miRNA like hairpin
structures, negative samples should be carefully chosen.
Our negative samples are close with the positive samples
in location and sequence but with clearly different hair-
pin structure, which make our negative samples very
suitable and lead to a good performance of the first
layer classification.

Although our proposed two-layer SVM method has
high prediction accuracy, it is rather time-consuming,
due to a lot of folding work done by RNAfold which is
highly computational demanding. For example, predict-
ing a 180nt sequence requires more than 3 minutes.
This shortcoming limited its application in large dataset.

In the future, we will try to cut down the run time by
changing programming language and improve the pre-
diction accuracy of DroshaPSP with more structure fea-
tures including the structure, base probability, entropy
for each site. We will also extensively evaluate the per-
formance of DroshaPSP with the prediction model
trained from Drosha processing sites from other species.
In addition, we are planning to develop a stand-alone
implement with parallel computation option for Drosha
processing site recognition on different OS platforms.

In conclusion, we developed a Drosha processing site
predicting program, called DroshaPSP, which is com-
posed of two classifiers based on SVM, the HairpinSVM
and the DroshaSVM. The HairpinSVM gave out the
performance with MCC 0.88, and the DroshaSVM was
even better with the MCC reaching 0.94. The overall
performance of DroshaSVM was that MCC reached 0.86
while SN was equal to 0.86 and SP was over 0.99. We
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brought the Shannon Entropy in the feature set of
DroshaPSP for the first time, and gained a substantial
improvement. It is found that the Shannon Entropy
helped the DroshaSVM in telling the true processing
site from the neighborhood.
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