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Abstract

Background: The naked mole rats (NMRs) are small-sized underground rodents with plenty of unusual traits. Their
life expectancy can be up to thirty years, more than seven times longer than laboratory rat. Furthermore, they are
resistant to both congenital and experimentally induced cancer genesis. These peculiar physiological and
pathological characteristics allow them to become a suitable model for cancer and aging research.

Results: In this paper, we carried out a genome-wide comparative analysis of rat and NMR using the recently
published genome sequence of NMR. First, we identified all the rat-NMR orthologous genes and specific genes
within each of them. The expanded and contracted numbers of protein families in NMR were also analyzed when
compared to rat. Seven cancer-related protein families appeared to be significantly expanded, whereas several
receptor families were found to be contracted in NMR. We then chose those rat genes that were inexistent in NMR
and adopted KEGG pathway database to investigate the metabolic processes in which their proteins may be
involved. These genes were significantly enriched in two rat cancer pathways, “Pathway in cancer” and “Bladder
cancer”. In the rat “Pathway in cancer”, 9 out of 14 paths leading to evading apoptosis appeared to be affected in
NMR. In addition, a significant number of other NMR-missing genes enriched in several cancer-related pathways
have been known to be related to a variety of cancers, implying that many of them may be also related to
tumorigenesis in mammals. Finally, investigation of sequence variations among orthologous proteins between rat
and NMR revealed that significant fragment insertions/deletions within important functional domains were present
in some NMR proteins, which might lead to expressional and/or functional changes of these genes in different
species.

Conclusions: Overall, this study provides insights into understanding the possible anti-cancer mechanisms of NMR
as well as searching for new cancer-related candidate genes.

Background
The naked mole rats (NMRs, Heterocephalus glaber) are
mouse-sized subterranean rodents native to East Africa
[1]. They have an exceptional set of physiological traits
that make them adapt to living in the underground of

droughty desert. They are becoming one of the most
extraordinary organisms known to science [2].
NMRs are the longest-lived rodent known till now and

their maximum lifespan can be up to thirty years [3]. By
contrast, other similar-sized rodents such as mouse pos-
sess a life expectancy of only four years, which is far less
than that of NMR. Previously published studies have
indicated that the longevity of NMR was possibly
because of the negligible decrement of age-related phy-
siological characteristic along with their lifetime, such as
declining fertility and mortality rate [4].
Besides delayed senescence, NMRs are remarkably

resistant to both congenital and experimentally induced
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cancer genesis [5]. Cancer is a group of complex polygenic
diseases that commonly affect lots of vertebrates, and is
constantly considered to be an inevitable accompanied by
senescence. Cancer is the second dominant cause of mor-
tality in the world, which cause 7.6 million of death esti-
mated by World Health Organization [6]. It has been
recognized for quite a long time that cancer genesis is
closely related to tumour suppressor genes and oncogenes
[7]. Identifying the function of the added genes may bring
us in another way to explore the regulatory network of the
cancer process. In addition, the mechanisms of cancer
resistance present in NMR are not thoroughly clear. Thus,
identification of NMR genes closely implicated in cancer
may provide us effective clues for delineating causes of
cancer proneness and studying anti-cancer properties for
mammalian organisms.
NMRs possess several other special physiological charac-

teristics as well. Although NMRs belong to the order of
rodentia, they are actually poikilothermal animals whose
body temperatures vary continuously following the envir-
onment [8]. Furthermore, NMRs are insensitive to certain
types of pain [9] and acid [10], and are well adapted to the
underground surrounding at an extremely low oxygen
concentration (10%-15%) [11].
Recently, using high-throughput next generation

sequencing techniques, the genome of NMR has been
sequenced. These excellent resources provide great
opportunities for understanding the exceptional character-
istics of NMR and improve biological and biomedical stu-
dies. Previously, some genes have been identified to be
related to some of these unusual characteristics, e.g., the
telomerase reverse transcriptase (TERT) gene and some
other genes, which may be involved in extended longevity
mechanisms of NMR [12]. However, investigation of the
genomic information of NMR at a systems-biology level is
still lacking, which may provide additional information to
uncover the molecular mechanisms for the extraordinary
traits (e.g., anti-cancer) of NMR.
In this paper, a comparative genomics study was carried

out to explore the genes that were either common
between rat and NMR, or specific to each of them. We
divided these genes into three groups: common genes,
genes only present in NMR and genes only present in rat.
We then used the Pfam database to identify the events of
gain or loss of different protein families between these two
species. In addition, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database was used to study the rat
pathways in which the NMR-missing genes participate. A
significant number of these genes were found to be
enriched in the pathways related to the exceptional char-
acteristics of NMR (such as cancer pathways), many of
which have been previously reported to be associated with
various cancers. Finally, we analyzed the sequence varia-
tions (such as domain insertion/deletion) of orthologous

proteins to investigate the potentially expressional and/or
functional alternations of them between rat and NMR.
Overall, our data not only help unveil the cancer resistance
mechanisms of NMR but provide insights into identifying
new cancer-related genes.

Methods
Genome, database and resources
The complete set of annotated rat and NMR protein
sequences were obtained from the UniProt database
(http://www.uniprot.org/). For those genes with alternative
splicing variants, proteins with the smallest PE value
(which means the most possibility for the existence of the
proteins) and the longest length were chosen to represent
the gene-encoding protein sequences. A total of 20835
and 21553 proteins corresponding to their genes were
finally obtained for rat and NMR, respectively.
The file containing the whole pathways of rat was

downloaded from the KEGG database (http://www.
genome.jp/kegg/pathway.html). The Online Mendelian
Inheritance in Man (OMIM) database (http://www.
ncbi.nlm.nih.gov/omim) was used to analyze the relation-
ship between cancers and human orthologs of genes
absent in NMR. Furthermore, the expression data of these
genes in rat tissues were obtained from the Gene Expres-
sion Atlas (GXA) database (http://www.ebi.ac.uk/gxa/),
which was used to identify whether or not the expression
levels of these genes were related to cancer development.

Identification of orthologous genes between
rat and NMR
To analyze the orthologous gene pairs between rat and
NMR, we employed the complete set of annotated proteins
of one organism as queries to search for orthologs in the
other species via BLASTP with a cut-off of E-value ≤ 1e-6.
Orthologous genes were further defined as bidirectional
best hits.
On the basis of identified orthologs between rat and

NMR, we dissected all the genes into three classifications:

(1) Class I: the Shared genes, which were shared
between rat and NMR;
(2) Class II: the NMR-missing genes, which were
absent in NMR but present in rat;
(3) Class III: the NMR unique genes, which were
found in NMR but missing in rat.

Pfam analysis
Considering that the conserved domains in a protein
could provide information for its function and evolution-
ary dynamics, we used the Pfam database [13] (http://
pfam.sanger.ac.uk/search), which collected a large
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collection of protein families, to search for gain or loss
events of different protein families between these two
species.
All the proteins of rat and NMR were searched against

Pfam database with a cut-off of E-value ≤ 1e-5. For each
protein, if two or more Pfam families were available,
only the one with the smallest E-value was selected. The
number of each protein family in rat and NMR was
then calculated respectively.

KEGG pathway analysis of Class II genes
We further dissected the pathways containing Class II
genes using the KEGG database resource, which is a col-
lection of manually curated pathway maps according to
current knowledge on protein-protein interactions [14].
First, each gene of Class II was mapped to their path-

ways. The p-value of the enrichment of NMR-missing
genes in each pathway was then calculated by hypergeo-
metric distribution test. Moreover, considering that
KEGG pathways were composed of nodes which were
actually modules including single gene or multiple func-
tionally similar genes, we further analyzed the number
and percentage of the nodes containing Class II genes in
each of the enriched pathways.

Sequence variation analysis of Class I genes
Although Class I genes were considered as orthologous
genes between rat and NMR, sequence variations had
been previously observed for certain proteins. For example,
the glutathione peroxidase 1 (GPx1), which is highly
expressed in mouse liver and kidney, has an early stop
codon in NMR. Such a variation results in the lack of the
C-terminal part and may be related to an order of magni-
tude lower activity in NMR tissues [15]. Thus, it would be
useful to further study the orthologous genes between the
two organisms for potential changes with regard to their
function and/or regulation.
To systematically investigate such deletion or insertion

events, we analyzed the BLASTP sequence alignment
results for each Class I gene in NMR, and focused on
gap-related parameters, such as alignment length, num-
ber of mismatches, and percentage of identical matches,
to calculate the lengths of sequence insertions/deletions.
Protein pairs of rat and NMR proteins were chosen at a
cut-off of gap length>25 and percentage of mismatches
<10%. To avoid incorrect protein annotation of NMR,
the NMR proteins with significant fragment deletion
were searched against the NMR genome using
TBLASTN for further verification of the absence of
these segments. Finally, all selected proteins were
searched against the Conserved Domains Database
(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml)
to identify their functional domains.

Results
Distribution of orthologous genes in rat and NMR
Figure 1 shows the Venn diagram between rat and NMR
genes. A set of 15408 genes (Class I) were found in both
rat and NMR, which occupied 73.9% of the total predicted
NMR genes. On the other hand, 6145 rat genes (Class II)
lacked orthologs in NMR. In contrast, 5427 genes (Class
III) appeared to be unique in NMR. Nevertheless, consi-
dering that the number of NMR orthologous genes
(Class I) is only about 71.5% of that of the rat total genes,
it is possible that some genes may be mis-annotated in the
currently released version of NMR genome.

Pfam analysis of rat and NMR genes
All the annotated proteins of rat and NMR were
searched against Pfam database (containing 13672
families) for the classification into different protein
families. 2442 and 2523 protein families (with 2416
overlapped families) were obtained in rat and NMR,
respectively, indicating that the two species shared
almost the same protein families.
We further analyzed the gain or loss events for each

protein family in NMR. Table 1 shows the top 15
families sorted by the number of expanded genes (gain)
in NMR. Among them, two distinct cancer-related pro-
tein families: “Melanoma-associated antigen family” and
“Mortality factor 4 families” had significant gene expan-
sion in NMR. A total of 56 and 15 genes were found for
the two families respectively in NMR, which were 27 and
11 more than those in rat. Besides, several other families
shown in Table 1 have also been reported to be related
to cancer, such as the protein kinase C (PKC) family and
several heat shock proteins (HSP70 and HSP90).
The PKC family, which possessed 53 proteins in

NMR, had variable roles in tumour biology depending
on the intracellular localizations and cell types. PKCs
were generally abnormally regulated in the cancers of
the breast, prostate, kidney and liver [16], and remained

Figure 1 Venn diagram of rat and NMR genes. A total of 20835
NMR genes and 21553 rat genes were obtained. Among them,
15408 genes were detected in both species.
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as a possible target for cancer prevention and therapy
[17]. Here, a total of 27 additional PKC members were
identified in NMR, implying that these new PKCs may
play an important role in preventing NMR from cancer.
HSP proteins are a group of functionally related proteins

regulating protein folding and unfolding reactions. HSP70
proteins were reported to be overexpressed in the mali-
gnant melanoma [18]. On the other hand, HSP90 proteins
were also implicated to be involved in breast cancer pro-
gression because of its overexpression in breast cancer cell
lines and association with survival of breast cancer [19].
Thus, HSP70 and HSP90 proteins have been considered
as the useful targets for cancer therapy [20,21]. In
this study, the significant expansions of members of these

two families in NMR were consistent with their potential
roles in cancer prevention and may provide clues for the
anti-cancer trait of NMR.
Table 2 shows the top 15 protein families with con-

tracted gene numbers (loss) in NMR. Among them, sev-
eral protein families have been previously verified to be
involved in cancer development. For example, the cad-
herin family is a class of type-1 trans-membrane proteins.
Members of this family may play important roles in cell-
cell adhesion in different organ systems [22]. All kinds of
abnormal expression of cadherin family proteins had been
reported as a widespread phenomenon in mammary can-
cer and these proteins had been frequently implicated
in tumour progression [23]. The loss of so many genes

Table 1 Expanded Pfam family of NMR

PFAM entry Explanation class I genes class II genes class III genes expanded

PF00001 rhodopsin family 221 108 205 97

PF01454 Melanoma-associated antigen family 11 18 45 27

PF00433 Protein kinase C family 26 1 27 26

PF02093 Gag P30 core shell protein 1 1 27 26

PF00012 Hsp70 protein 13 0 23 23

PF01849 NAC domain 4 2 20 18

PF00276 Ribosomal protein L23 1 1 16 15

PF01282 Ribosomal protein S24e 2 2 16 14

PF05712 Mortality factor 4 family 2 2 13 11

PF00261 Tropomyosin 5 0 10 10

PF00153 Mitochondrial carrier protein 46 8 17 9

PF00118 TCP-1/cpn60 chaperonin family 12 2 10 8

PF00183 Hsp90 protein 4 0 8 8

PF01015 Ribosomal S3Ae family 1 1 9 8

PF01873 Domain found in IF2B/IF5 2 0 8 8

The Pfam families were sorted by the expanded number of protein families. In this table, we only showed the top 15 families.

Table 2 Contracted Pfam family of NMR

PFAM entry Explanation class I genes class II genes class III genes contracted

PF13853 Olfactory receptor 293 852 691 161

PF03402 Vomeronasal organ receptor 2 99 3 96

PF00003 class C G-protein-coupled receptors 14 72 17 55

PF00028 Cadherin family 50 38 4 34

PF05296 Mammalian taste receptor protein 4 32 2 30

PF08391 Ly49-like protein 1 21 0 21

PF02994 L1 transposable element 0 20 0 20

PF01157 Ribosomal protein L21e 1 32 13 19

PF13885 high sulfur B2 protein 3 12 1 11

PF13841 Beta defensin 7 11 0 11

PF01198 Ribosomal protein L31e 1 16 6 10

PF01779 Ribosomal L29e protein family 1 10 1 9

PF12774 chaperone-like ATPases 1 9 0 9

PF00879 Defensin propeptide 0 9 1 8

PF00618 Ras-like small GTPase 0 8 0 8

The Pfam families were sorted by the contracted number of protein families. In this table, we only showed the top 15 families.
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in this family may also contribute to the complex cancer-
resistant mechanisms of NMR. In addition, a significant
loss of members of some receptor protein families, such as
the vomeronasal organ receptor (VOR), olfactory receptor
and class C G-protein-coupled receptor, may be important
for some unique features of the most unusual rodent.

Pathway analysis of NMR-missing genes
Among 216 rat pathways in the KEGG database, 16 of
them were found to be significantly (p-value < 0.01)
enriched by the NMR-missing genes (group II genes)
(Table 3). For example, at least 31 rat genes (10.7%) in
the “Neuroactive ligand-receptor interaction” pathway
were not detected in NMR. The loss of these genes
might be one of the major reasons why NMR is insensitive
to pain and acid [24]. In addition, NMR-missing genes
were also significantly enriched in two known cancer path-
ways, “Bladder cancer” and “Pathways in cancer” (with the
p-value 2.37e-3 and 1.17e-3, respectively).
Among the rest of pathways shown in Table 3 five of

them were thought to be cancer-related, which include
“Cytokine-cytokine receptor interaction” [25], “p53 signal-
ling pathway”[26], “Apoptosis”, “Natural killer cell
mediated cytotoxicity” [27], “Wnt signalling pathway”
[28]“ and “Notch signalling pathway” [29]. It is possible
that several of these NMR-missing genes are associated
with cancer development in other mammals including
humans and could be considered as candidate cancer-
related genes.
As KEGG pathways are composed of nodes which

may have single or multiple functionally similar genes,
we also calculated the percentage of the nodes which
contain at least one NMR-missing gene in each of these

pathways, and obtained almost the same enriched path-
ways, such as “Pathways in cancer”, “Neuroactive ligand-
receptor interaction” and “Oxidative phosphorylation”,
implying that the pathway enrichment of NMR-missing
genes was significant at both gene and node levels (Sup-
plementary Table 1 [see additional file 1]).

Analysis of cancer-related genes that were absent in NMR
To investigate the potential mechanisms of the anti-cancer
aspects of NMR, three cancer-related pathways, including
“pathways in cancer”, “MAPK (mitogen-activated protein
kinase) signalling pathway” and “Wnt signalling pathway”,
were chosen as examples for further analysis.
1) Pathways in cancer
Twenty-nine genes in this pathway were not detected in
NMR (Supplementary Table 2 [see additional file 1]).
These genes were found to be strongly related to cancer.
Half of them correspond to various phenotypes of cancer
(e.g., leukemia, lung cancer and adrenal cortical carci-
noma) based on the information retrieved from OMIM
database, including several well-studied carcinogenesis
genes (Bcl2, Casp8, Fas). Moreover, some important
proto-oncogenes, such as Myc and Hras1, were also
absent. In fact, it is well known that proto-oncogenes are
normal genes that could become the oncogenes because
of their overexpression or mutations. The loss of the
proto-oncogenes in NMR cells may also contribute to
cancer resistance.
Among all 29 NMR-missing genes in this pathway, 19 of

them (65.5%) were previously reported to display differen-
tial gene expression levels between cancer and normal
tissues. Thus, the absence of these genes might play
important roles in suppressing cancer.

Table 3 Pathway enrichment analysis of NMR-missing genes*

pathway ID pathway name gene number total number p-value

rno04740 Olfactory transduction 518 1015 1.4E-11

rno03010 Ribosome 18 91 4.4E-07

rno04060 Cytokine-cytokine receptor interaction 31 247 2.0E-06

rno04080 Neuroactive ligand-receptor interaction 31 290 5.1E-05

rno00190 Oxidative phosphorylation 26 244 2.1E-04

rno04115 p53 signaling pathway 12 80 5.6E-04

rno05200 Pathways in cancer 29 317 1.2E-03

rno04330 Notch signaling pathway 8 47 2.0E-03

rno05014 Amyotrophic lateral sclerosis 10 69 2.0E-03

rno04610 Complement and coagulation cascades 10 69 2.0E-03

rno05219 Bladder cancer 7 38 2.4E-03

rno04310 Wnt signaling pathway 16 149 3.0E-03

rno04650 Natural killer cell mediated cytotoxicity 14 125 3.6E-03

rno03050 Proteasome 8 52 3.8E-03

rno04210 Apoptosis 12 107 6.8E-03

rno04010 MAPK signaling pathway 19 213 9.9E-03

*: In this table, we only showed the pathways with p-value≤0.01.
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Figure 2 shows the main part of the map of “pathways in
cancer”. One of the key mechanisms for cancer develop-
ment is “Evading apoptosis”, which is a crucial oncogenic
property of cancer cells. Among the 14 paths leading to
evasion of apoptosis illustrated in this map, 9 of them
appeared to be influenced by direct connection to the
nodes which contain NMR-missing genes. Particularly, the
nodes of Survivin, Bcl-2, Bcl-XL and Mtor have lost sev-
eral functionally similar genes in NMR. It is possible that
these changes in NMR might block the major routes to
evade apoptosis, and then induce the early programmed
death of cancer cells as an important cancer barrier.
Recently, a two-tier anti-cancer mechanism associated

with contact inhibition regulated by p16Ink4a and p27Kip1

has been reported in NMR [30]. However, rat cells were
found to only have contact inhibition regulated by
p27Kip1. This is consistent with our results as rats
only have p27Kip1 gene. Thus, NMR appeared to have
additional unique protective mechanisms for cancer
resistance.
2) MAPK signalling pathway
The MAPK signalling pathway is an important pathway
how proteins in the cytoplasm communicate the signals
from the receptors on the cell membrane to the nucleus.
It is in the central of a molecular metabolic network
that mediates cell differentiation and proliferation. In
mammalian cells, the MAPK pathway contains three
major groups of proteins, including Erk (extracellular

Figure 2 pathways in cancer. Green nodes represent the nodes in which parts of genes were lost, whereas red nodes represent the nodes in
which all genes were lost. White nodes represent the nodes which were same between rat and NMR. A blue line denotes the path of evading
apoptosis containing at least one red or green node, whereas a yellow line denotes the same path between rat and NMR. In this figure, nine of
fourteen paths leading to evading apoptosis have been affected.
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signal-regulated kinase), p38 kinase and Sapk (stress
activated protein kinase). These proteins are abnormally
regulated in various diseases, including cancer and
inflammation.
In this study, 19 genes were found to be absent in NMR

(Figure 3 and Supplementary Table 3 [see additional file
1]). By retrieving the OMIM database and GXA database,
we found that 7 (36.8%) of them have been reported to be
related to various phenotypes of cancer in other mammals
and 10 (52.6%) of them had differential expression levels
between cancer and normal tissues.
In this pathway, three proto-oncogenes, Hras1, Myc

and Pdgfb (also present in the “Pathways in cancer”
pathway), were absent in NMR. It has been previously
shown that when one of these genes was mutated, the
activity of their enzymes could be stuck in the “on” or
“off” position, which was an essential step during the
development of many cancers [31]. Recently, it has also
been reported that NMR and rat cells acted totally
opposed if transfected with Hras1. NMR cell cycle came
to an abrupt end as the presence of abnormal chromatin

material and anaphase bridges and, while transfected rat
cell grew rapidly and formed tumours eventually [32].
Therefore, the loss of these genes might also play a
significant role in cancer resistance.
Although the phenotypes of cancer could not be

found for other NMR-missing genes, some of them have
been demonstrated to be related to the survival of cancer
cells, such as Jund and Park genes. Jund is an AP-1 family
member involved in various biological processes such as
cell apoptosis and tumour metastasis, and could regulate
survival of tumour cells in prostate cancer [33]. Prak is a
protein kinase, which was previously shown to be impli-
cated in the suppression of skin carcinogenesis [34].
Further experiments are needed to investigate the relation-
ship between these genes and tumorigenesis.
3) Wnt signalling pathway
The “Wnt signalling pathway” is a conserved protein-
protein interaction network that regulates cell fate deci-
sions and cell-cell communication. This pathway plays a
significant role in maintaining stability of internal environ-
ment by regulating cell niche in vivo. Abnormal regulation

Figure 3 MAPK signalling pathway. See Figure 2 legend for the definitions of different colours. In this pathway, many important cancer-
related genes, such as Hras1, Mkk7 and Prak, were lost.
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of this pathway could lead to neoplastic proliferation
which is involved in the progress of cancer cells.
Seventeen genes were found to be absent in the NMR

genome (Figure 4 and Supplementary Table 4 [see addi-
tional file 1]). Among them, 4 (25%) genes have corre-
sponding phenotypes of cancer whereas 12 (75%) genes
were differentially expressed between cancer and normal
tissues. Molecular-level studies have indicated that
approximately 90% of the activating mutations of genes
in this pathway could cause different cancers such as
colorectal cancer [35].
Several well-studied cancer-related genes, such as

Myc, Rhoa, Lef1 and Rac1, were absent in this pathway
of NMR. Myc is a well-known proto-oncogene and has
been frequently used to induce tumour formation in a
lot of animal experiments of cancer research. Rhoa has
been deeply studied and proved as a cancer-regulated
gene, which controlled metastasis of tumour cells, acted
as a regulator of male hormone activity in prostate cancer
cells [36], and triggered a particular microvesicle signalling
pathway in cancer cells [37]. Lef1 protein could interact
with a number of other proteins, such as Ctbp and Nlk.

These interactions were thought to be responsible for the
invasion and growth of prostate cancer [38]. Rac1 was
found to be associated with DNA transcription. Previous
studies have reported that activation of Rac1 mediated
Twist1-induced cancer cell migration [39]. On the other
hand, 12 of the NMR-missing genes in this pathway, such
as Dkk4, Sox17 and Ccnd3, have not been reported to be
related to any disease including cancer. It is possible that
some of them are also involved in cancer formation and
could be further experimentally verified.

Sequence variation analysis of Class I genes
Based on the BLASTP sequence alignment results, we
found that 6349 (41.2%) of the orthologs had no gaps
and 12142 (78.8%) orthologs only possessed a small
(≤5 amino acids) gaps, suggesting that most of the
orthologous proteins between rat and NMR had rare
insertions/deletions during evolution. On the other
hand, 439 orthologous proteins showed significant seg-
ment insertions/deletions whose length was more than
25 amino acids. Further analysis of these inserted and
deleted fragments in these proteins revealed that many

Figure 4 Wnt signalling pathway. See Figure 2 legend for the definitions of different colours. Some well-studied cancer-related genes such as
Lef1, Rhoa and Rac1, were lost in this pathway.
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of them contained conserved sites, including functionally
active sites (Supplementary Table 5 [see additional file 1]).
For example, we observed that parts of the specific RNA/
DNA binding site and the specific cytokine receptor motif
were deleted in the NMR Fusip1 and Nrcam proteins,
respectively.
Other domains affected by the insertion/deletion of

certain segments included ATP-binding, Ca2+ binding and
some other metal catalytic binding sites. For example, a
30-amino-acid-long sequence fragment was found to be
inserted into the putative catalytic site in NMR Ship1
when compared with its ortholog in rat. It has been
previously demonstrated that the phosphate domain of
Ship1 was essential for catalytic activity in vivo [40] and
the loss of Ship1 could promote leukemogenesis in a
virus-infected mouse model [41]. We suspect the insertion
of such a long segment of Ship1 would change the func-
tion or expression of this gene. On the other hand, wrong
annotation of some NMR proteins could not be excluded.
Further studies are required to verify the presence of the
sequence variations and their influence on the regulation
or function of these proteins.

Conclusions
In this paper, a comparative genomics study was carried
out to investigate the genes that were either common
between rat and NMR, or specific to each of them. The
majority of genes were shared by the two rodents,
whereas each organism had a significant part of unique
genes. Seven cancer-related protein families, such as
melanoma-associated antigen family, protein kinase C
family and HSP family were found to be significantly
expanded. Further analysis of the genes absent in NMR
indicated that the majority of them have been shown to
be linked to many forms of cancer. Finally, some con-
served functional domains were found to be possibly
influenced by the insertion or deletion of certain frag-
ments in NMR, which may change the expression or
function of some of these genes. These results may pro-
vide important clues about the molecular mechanisms
of cancer resistance of NMR and help identify new can-
cer-related genes [42] in mammals. As future topics, it
is important to study such complex mechanisms from
the viewpoints of network [43-46] and dynamics [47,48]
by further incorporating the expression data.
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