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Abstract

Motivation: Understanding the molecular mechanisms underlying cancer is an important step for the effective
diagnosis and treatment of cancer patients. With the huge volume of data from the large-scale cancer genomics
projects, an open challenge is to distinguish driver mutations, pathways, and gene sets (or core modules) that
contribute to cancer formation and progression from random passengers which accumulate in somatic cells but
do not contribute to tumorigenesis. Due to mutational heterogeneity, current analyses are often restricted to
known pathways and functional modules for enrichment of somatic mutations. Therefore, discovery of new
pathways and functional modules is a pressing need.

Results: In this study, we propose a novel method to identify Mutated Core Modules in Cancer (iMCMC) without any
prior information other than cancer genomic data from patients with tumors. This is a network-based approach in
which three kinds of data are integrated: somatic mutations, copy number variations (CNVs), and gene expressions.
Firstly, the first two datasets are merged to obtain a mutation matrix, based on which a weighted mutation network is
constructed where the vertex weight corresponds to gene coverage and the edge weight corresponds to the mutual
exclusivity between gene pairs. Similarly, a weighted expression network is generated from the expression matrix where
the vertex and edge weights correspond to the influence of a gene mutation on other genes and the Pearson
correlation of gene mutation-correlated expressions, respectively. Then an integrative network is obtained by further
combining these two networks, and the most coherent subnetworks are identified by using an optimization model.
Finally, we obtained the core modules for tumors by filtering with significance and exclusivity tests. We applied iMCMC
to the Cancer Genome Atlas (TCGA) glioblastoma multiforme (GBM) and ovarian carcinoma data, and identified several
mutated core modules, some of which are involved in known pathways. Most of the implicated genes are oncogenes
or tumor suppressors previously reported to be related to carcinogenesis. As a comparison, we also performed iMCMC
on two of the three kinds of data, i.e., the datasets combining somatic mutations with CNVs and secondly the datasets
combining somatic mutations with gene expressions. The results indicate that gene expressions or CNVs indeed
provide extra useful information to the original data for the identification of core modules in cancer.

Conclusions: This study demonstrates the utility of our iMCMC by integrating multiple data sources to identify
mutated core modules in cancer. In addition to presenting a generally applicable methodology, our findings provide
several candidate pathways or core modules recurrently perturbed in GBM or ovarian carcinoma for further studies.
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Background
Cancer is a complex disease and multiple factors including
genomic, epigenomic, and gene expression aberrations are
involved in its formation and development [1]. Under-
standing the pathogenesis of cancer at the molecular level
is a great challenge and will shed lights on the effective
diagnosis and treatment of cancer patients. Rapid advances
in high-throughput sequencing technologies create oppor-
tunities to address this task. Large-scale cancer genomics
projects, such as the Cancer Genome Atlas (TCGA) [2],
International Cancer Genome Consortium (ICGC) [3] and
the Catalogue Of Somatic Mutations In Cancer (COS-
MIC) [4], have produced a large volume of data in recent
years, providing a basis for systems level understanding of
cancer formation and progression [5].
In general, cancer genomes possess a large number of

mutations including somatic mutations and copy number
variations (CNVs). Among them, some mutations contri-
buting to cancer progression from the normal to the
malignant state are called driver mutations, and those that
accumulate in cells but do not contribute to cancer devel-
opment are called passengers [6,7]. Therefore, distinguish-
ing the functional driver mutations, driver pathways or
core modules from random passengers will be a crucial
step in understanding the molecular mechanisms of carci-
nogenesis, which can further aid in effective diagnosis,
treatment and prognosis of cancer patients.
Initially, efforts were devoted to detect individual driver

genes that cause tumors. A standard approach for this is
to identify recurrent mutations in a large cohort of cancer
patients. But the extensive mutational heterogeneity of
cancer genomes [2,8,9] makes this kind of method some-
times ineffective because patients even from the same
tumor type can have different driver mutations.
Further studies revealed that the acquisition of tumori-

genic properties, such as cell proliferation, angiogenesis, or
metastasis are mainly due to disruption of some cellular
signaling and regulatory pathways [10,11]. Driver muta-
tions either directly target such biological pathways or
tend to cluster within closely knitted network modules
which are closely linked to specific biological pathways
[12,13]. Thus, identification of mutated driver pathways or
core modules is of primary importance for understanding
cancer initiation and progression. Moreover, a great deal
of investigation indicates that genes in the driver pathway
or core module usually cover a large number of samples
and exhibit mutual exclusivity, these two criteria are com-
monly used in the pathway or module based methods. For
example, Ding et al. [8] and Jones et al. [9] analyzed
known pathways for enrichment of somatic mutations,
Boca et al. [14] and Efroni et al. [15] detected known path-
ways which are significantly mutated across the patients,
and Cerami et al. [16] and Ciriello et al. [17] identified

oncogenic network modules by using somatic mutation
and the human reference network. Although the priori
knowledge (such as protein-protein interactions (PPI) and
signal transduction pathways) can provide some useful
information for the detection of driver mutations, the
incompleteness of the human PPI network and the exis-
tence of many unknown pathways may limit the wide
application of such methods in some extent. Recently,
methods and algorithms were developed for de novo dis-
covery of mutated driver pathways and functional modules
in tumors based solely on cancer genomic data [18-20].
On the other hand, somatic mutations and CNVs in

cancer genomes frequently perturb the expression level of
affected genes and thus disrupt pathways controlling nor-
mal growth. Genes in the same pathway usually have simi-
lar gene expression profiles and thus can coordinately
achieve a particular function [21]. Several studies have
demonstrated the necessity of integrating gene expression
information to identify candidate driver genes and driver
pathways [19,22,23].
In this study we present an integrative method, called

iMCMC (identify Mutated Core Modules in Cancer) that
integrates gene sequence and expression information to
identify mutated core modules in cancer. A typical charac-
ter of iMCMC is that it uses only cancer genomic data
without any prior knowledge such as PPI networks and
known pathways. First, somatic mutations and CNVs are
used to generate a mutation network, similarly an expres-
sion network is obtained from the gene expression
profiles. Then, an integrative molecular network is con-
structed by combining these two networks (i.e., integrating
the three different kinds of data). Finally, an optimization
model is used to identify coherent subnetworks (modules),
which are further assessed by statistical tests. These are
key contributions of our approach. The main considera-
tion is that cooperative dysregulation of gene sequence
and expression may contribute to cancer formation and
progression. Furthermore, cellular networks contain func-
tional modules, and tumors usually target specific modules
critical to their growth. More importantly, our weighted
integrative network is constructed to take into considera-
tion possible features of genes in the driver pathways or
core modules: large coverage, mutual exclusivity, strong
influence of a gene’s mutation on other genes, and high
correlation of gene mutation-correlated expressions. All
these factors are reflected in the vertex weight or edge
weight of the integrative network. Applying iMCMC to
the TCGA glioblastoma multiforme (GBM) and ovarian
carcinoma data, we identified five and two mutated core
modules, respectively. In the GBM data, the involved path-
ways include parts of the RB signaling and RTK signaling
pathways (CDKN2B, CDK4; EGFR, NF1 ), and in the ovar-
ian carcinoma data a recurrent mutated module related to
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cell cycle and DNA repair (CCNE1, MYC, RAD52 ) is
revealed. Importantly, most of the implicated genes are
oncogenes or tumor suppressors previously reported to be
related to cancer pathogenesis (others include TP53,
PTEN, RB1, MDM2 for GBM, and KRAS for ovarian carci-
noma). Furthermore, to investigate the possible role of
gene expressions or CNVs for the identification of
mutated core modules, we also performed iMCMC on the
datasets consisting of somatic mutations combined with
CNVs or gene expressions. The results indicate that each
indeed provides extra useful information to the original
data for module detection. To conclude, as a generally
applicable methodology, iMCMC can identify not only
some known pathways but also provide candidate path-
ways or core modules recurrently perturbed in cancer for
further studies.

Results and discussion
Overview of our method
Three kinds of data including somatic mutations, CNVs,
and gene expressions were used in this study. All data
were downloaded from the TCGA website (https://tcga-
data.nci.nih.gov/tcga/). The proposed iMCMC method for
identification of mutated core modules contains six steps.
A schematic overview of iMCMC is displayed in Figure 1.
For additional details please refer to the Materials and
methods section.
Step 1: A mutation matrix is obtained by combining

somatic mutations and CNVs, and an expression matrix
is generated from gene expression profiles.
Step 2: A mutation network and an expression net-

work are constructed based on the mutation and expres-
sion matrices, respectively.
Step 3: These two networks are integrated into an

integrative network.
Step 4: Coherent subnetworks (modules) are identified

using an optimization model.
Step 5: A random test is performed to assess signifi-

cance of the selected subnetworks, for which a p-value
p1 is obtained.
Step 6: Finally, a Markov chain Monte Carlo permuta-

tion strategy is adopted to test mutual exclusivity of the
subnetworks, and a p-value p2 is calculated.
In the end, core mutated modules can be obtained if

the selected subnetworks pass the last two statistical
assessments.

Application to glioblastoma multiforme (GBM)
Among the glioblastoma dataset obtained from TCGA,
DNA copy number variations are present in 169 samples,
gene expression profiles in 202 and nucleotide sequence
aberrations in 135 samples. Using the construction proce-
dure of the integrative network 93 genes were left in the
integrative network M (notice that some of these are

metagenes - genes that are mutated in the same samples).
These genes are present in 90 samples common to all
three kinds of data. Five core modules are obtained by per-
forming iMCMC on M, where l = 1 is used (see Materi-
als and methods).
The first module consists of CDKN2A and CYP27B1

and covers 60 GBM samples. Initially, five genes including
CDK4, CDKN2A, CDKN2B, CYP27B1, and MTAP were
detected. This group of genes has a significant p-value of
p1 < 0.001 and the exclusivity p-value of p2 = 1. After
sequentially removing some co-occurring genes, we
obtained CDKN2A and CYP27B1 with p2 <0.001. Pre-
viously, CDKN2B and CYP27B1 were identified as the
most frequently sampled pair for GBM [18]. Both
CDKN2A and CDKN2B are tumor suppressors located on
9p21.3-22.3 which is a common homozygous deletion
region on the human chromosome. These two genes
mutate almost simultaneously in all samples, so they have
a very low exclusivity value (0.06), and it is not contradic-
tory for us to identify CDKN2A instead of CDKN2B in the
module for further analysis. CDKN2A encodes protein
p16, which is a tumor suppressor protein with an impor-
tant role in cell cycle regulation [24]. Mutations in
CDKN2A are associated with increased risk in a wide
range of cancers. Especially, recent studies showed that
CDKN2A in high-grade glioma tissues was significantly
down-regulated than in low-grade glioma tissues [25],
which indicates that CDKN2A may be involved in malig-
nant glioma carcinogenesis. CYP27B1 plays an important
role in normal bone growth, calcium metabolism, and tis-
sue differentiation. Gene amplification and mRNA splice
variants of CYP27B1 in human glioblastoma were also
previously reported [26].
The second module is obtained by removing CDKN2A

and CYP27B1 from the integrative network M and per-
forming iMCMC on the remaining genes (Figure 2).
CDKN2B and a metagene including CDK4 and TSPAN31
were identified with a coverage rate of 63/90. This mod-
ule is significant and the genes CDKN2B and CDK4/
TSPAN31 are mutually exclusive with p1 <0.001 and p2
<0.001. Several studies have found that variants of
CDKN2B are associated with high-grade glioma suscept-
ibility [27]. Feng et al. [28] made an integrated analysis of
multiple kinds of data at 9p21.3 in glioblastoma and
showed that the complete loss of 9p21.3 and low
CDKN2B expression were associated with worse prog-
nosis for both tumor progression/recurrence-free survi-
val. The functional importance of CDK4 in astrocytic
tumourigenesis, particularly during the later stages of
tumor progression has been reported [29]. This gene has
also been a putative prognostic marker and related to the
survival of GBM patients [30,31]. As an oncogene, CDK4
is suppressed by CDKN2B in the RB signaling pathway
(Figure 2B). The gene TSPAN31 is thought to be involved
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in growth-related cellular processes, because the encoded
protein mediates signal transduction events thus plays a
role in the regulation of cell development, activation and
growth. TSPAN31 is associated with tumorigenesis
although there is no report about its relationship with
GBM. However, TSPAN31 was also found highly ampli-
fied in a number of GBM patients elsewhere. Here
TSPAN31 and CDK4, as a metagene, mutate in the same
samples, and both are relatively correlated to CDKN2B
(Figure 2A).

A more detailed explanation of Figure 2A will help
demonstrate the advantage of our framework, which can
further enable understanding of how the three kinds of
data are integrated and utilized for identification of the
module. Both mutation (including somatic mutations and
CNVs) and expression information exists not only in the
edge but also in the vertex. In the vertex of Figure 2A,
these correspond to the red and blue parts, respectively,
which represent the proportion of coverage and the influ-
ence of mutation status on other genes while along the

Figure 1 Schematic overview of the integrative iMCMC method. (A) Illustration of the construction of two networks with weighted vertices
and weighted edges. Firstly, a mutation matrix can be obtained by combining the somatic mutations and CNVs, and an expression matrix is
obtained from the gene expression profiles. Then, the weighted mutation network and expression network are constructed from these two
matrices. (B) These two networks are combined to get an integrative network M, for which an optimization model is used to identify the most
coherent subnetworks. Finally, we obtained the core modules for tumors by filtering with significance and exclusivity tests, for which two
p-values p1 and p2 are calculated, respectively.
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edge they point to mutual exclusivity and gene expression
correlation respectively. This and other figures show that
exclusivity in the detected module is always large due to
the application of mutual exclusivity test in iMCMC.
Although the expression correlation is not very high, the
influence of some genes on other genes calculated from
their expression is sometimes heavily utilized in the vertex.
Therefore, we presume that gene expression indeed plays
an important role in the identification of mutated core
modules which is reflected either in the edge or in the ver-
tex of the integrative network.
Performing iMCMC after removal of the foregoing

two modules from M results in the third module with
three genes (TP53, PTEN and MTAP ) and the fourth
module including three other genes (EGFR, NF1 and
MDM2 ) and a metagene (CHAT/SLC18A3 ). Both
modules are highly significant (p1 <0.001 and p2 <0.001)
and cover 70 and 46 GBM samples, respectively. Finally,
our method identifies a module including RB1 and a
metagene DKK1/PRKG1/CSTF2T significant at p1
<0.001 and p2 = 0.02 levels. Besides these no other sig-
nificant modules are detectable.
In the third module, both TP53 and PTEN are important

tumor suppressors [32]. When PTEN is mutated or

deleted its enzymatic activity will be inactivated which
may lead to increased cell proliferation and reduced cell
death. Several studies indicate that concomitant inactiva-
tion of TP53 and PTEN promoted the development of
glioblastoma. This co-operative nature was also validated
in adult brain of mature mice [33]. The gene MTAP
encodes an enzyme that plays a major role in polyamine
metabolism and is important for the adenine and methio-
nine salvage pathway [34]. A number of studies indicate
that MTAP deficiency is a common occurrence in various
cancers including glioblastomas, non-small cell lung can-
cer, melanoma, pancreatic and endometrial cancer [35,36].
Here MTAP not only has stronger exclusivity but also
higher gene expression correlation with TP53 than PTEN
in the identified module.
The genes EGFR and NF1 in the fourth module are

involved in the RTK signaling pathway (Figure 3B),
which is one of the core pathways altered in the develop-
ment of GBM [2]. NF1 is a human glioblastoma suppres-
sor gene while EGFR is frequently activated in primary
glioblastomas. Both have been used as biomarkers for the
identification of the glioblastoma subtypes [37]. Amplifi-
cation of MDM2 or increased expression occurs in many
tumors [38]. Although TP53 and MDM2 often form a
negative feedback loop by MDM2 inhibiting TP53 activ-
ity which results in transcriptional up-regulation of
MDM2 expression, functions of MDM2 independent of
TP53 have also been identified. For example, Biernat et
al. demonstrated the molecular mechanism of MDM2’s
escape from TP53-regulated growth control [39]. The
gene CHAT encodes an enzyme which catalyzes the bio-
synthesis of the neurotransmitter acetylcholine. SLC18A3
is located within the first intron of CHAT and aids in the
transport of acetylcholine, synthesized by CHAT, into
secretory vesicles for release into the extracellular space.
CHAT is presently the most specific indicator available to
monitor the functional state of cholinergic neurons in
the central and peripheral nervous systems [40]. Central
cholinergic neurons are involved in several neurodegen-
erative diseases such as Alzheimer’s disease and amyo-
trophic lateral sclerosis. Abnormalities of CHAT in the
brain have also been demonstrated in schizophrenia and
sudden infant death syndrome. In the fourth module,
MDM2 and EGFR as well as MDM2 and NF1 are highly
exclusive with high correlation in expression (Figure 3).
Moreover, high exclusivity or correlation is also observed
between NF1 and EGFR, NF1 and CHAT/SLC18A3 as
well as EGFR and SLC18A3, respectively.

Application to ovarian cancer
The ovarian carcinoma dataset from TCGA describes
DNA copy number variations in 559 high-grade serous
ovarian adenocarcinomas, gene expression profiles in 489
tumors and DNA sequence aberrations in coding genes

Figure 2 The second module identified by iMCMC and the
corresponding known pathway in the GBM data. (A) Red and
blue colors in the vertex represent the proportion of gene’s
coverage and the influence of its mutation status on other genes.
Thick gray line shows that gene CDKN2B and the metagene CDK4/
TSPAN31 are approximately exclusive (with exclusivity more than
0.90), whereas the dashed green curve represents existence of
relative correlation between the expressions of the corresponding
pair of genes. It is similar for the following figures. (B) CDK4 is
suppressed by CDKN2B in the RB signaling pathway, where the
interaction is as reported in [2].
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of 320 tumors. After preprocessing, we obtained 371
genes in the integrative network M in 311 samples. Here,
some genes merged as metagenes.
We notice that TP53 is the most commonly mutated

gene and is present in more than 80% of the high-grade
serous ovarian carcinomas while all other genes are
mutated in less than 27% of samples. In addition, analy-
sis of TTN mutations indicates that these are likely to
be artifacts [41]. Considering the prevalence of TP53
mutation and the possible inaccuracy of TTN mutations,
we removed these two genes from M and performed
iMCMC on the remaining genes for which two mutated
core modules are identified.
The first module consisting of three genes, CCNE1,

MYC and RAD52, is statistically significant with p1 <0.001
and p2 <0.001. This module is approximately exclusively
mutated in 150 samples. CCNE1 and MYC are two impor-
tant genes engaged in cell cycle progression (Figure 4B).
The gene CCNE1 is essential for the control of the cell
cycle at the G1/S transition. In many tumors overexpres-
sion of this gene results in chromosome instability that
may contribute to tumorigenesis [42]. Nakayama et al.
demonstrated that amplification of CCNE1 is related to
poor survival suggesting that CCNE1 can be a potential
therapeutic target in the treatment of ovarian cancer [43].
MYC is a strong proto-oncogene that codes a transcription
factor and is often found to be constitutively (persistently)
expressed in many types of cancers [42]. This leads to the

unregulated expression of many genes (presumably
through DNA over-replication), some of which are
involved in cell proliferation and result in cancer forma-
tion [44]. The gene RAD52 is involved in double-stranded
break repair and plays a central role in genetic recombina-
tion and DNA repair. Experiments by Schilddraut et al.
provide evidence for an association between several genes
in the DNA repair and response pathways and risk of inva-
sive serous ovarian cancer [45]. In addition to genes with
strong support associations, the study is also supportive of
associations between three SNPs in RAD52 and invasive
serous ovarian cancer. More importantly, RAD52 in the
current module is not only highly exclusive but also corre-
lates with MYC and CCNE1.
The second module consists of KRAS and PPP2R2A

with p1 <0.001 and p2 = 0.05, covering 77 samples. As an
Oncogene, KRAS is an important signal transducer
involved in the regulation of various cellular responses
during cell proliferation, differentiation, and survival.
Mutations in KRAS frequently occur in cancer cells such
as specific ovarian cancer subtypes [46] and indicate poor
prognosis and increased resistance to some cancer thera-
pies [47]. The protein encoded by PPP2R2A is also impli-
cated in the negative regulation of cell growth and
division, and is associated with a variety of regulatory
subunits. Although PPP2R2A has not been directly impli-
cated in tumorigenesis, several findings suggest that
deregulation of CHEK2 and/or PPP2R2A has pathogenic

Figure 3 The fourth module identified by iMCMC in the GBM data and locations of the detected genes in known pathways. (A) Mutual
exclusivity between any pair of genes is greater than 0.80 in this module. Thick gray line denotes a value more than 0.90 and thin line
represents a value between 0.80 and 0.90. (B) The detected genes EGFR and NF1 are in the RTK signaling pathway, where the interactions are as
reported in [2]. The dense dashed line represents pair of genes with exclusivity more than 0.90 and correlation larger than 0.20. The loosely
dashed line represents exclusivity more than 0.90 only, and the dot-and-dash curve represents correlation larger than 0.20 only.
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effects in at least a subset of germ cell tumors in child-
hood teratoma [48].

Analysis using only somatic mutations and CNVs
To further investigate if gene expression provides useful
information for the identification of mutated core modules
in cancer, we analyzed data only from somatic mutations
and CNVs. In this case only one significant module is
detected for each dataset. In GBM, the module contains
three genes CDKN2B, PTEN and TP53. Compared to the
module containing PTEN, TP53 and MTAP identified
using all three kinds of data, the current module has lower
exclusivity between several pairs of genes (Figure 5). In the
ovarian carcinoma data the module consists of CCNE1
and MYC. Interestingly, RAD52 is not detected, although
it has a high correlation and very high exclusivity both
with CCNE1 and MYC (Figure 4). All these indicate that
gene expression is helpful for the identification of biologi-
cally mutated core modules in cancer.

Integration of somatic mutations and gene expressions
data
Recently, core modules were detected in the GBM data
without using CNV information [49]. In this case three
modules were identified which are significantly mutually
exclusive (Table 1). A slightly different strategy was
adopted in [49] for data integration: more weight is given
to somatic mutations than gene expressions (i.e., k = 2 was
used in the integrated model); a smaller threshold is
selected to detect a bigger subnetwork in the optimization

algorithm; and the statistical test for mutual exclusivity is
also slightly different.
Several oncogenes or tumor suppressors such as

PTEN, TP53, EGFR and NF1 were also detected when
these two kinds of data are used for GBM. These four
genes are involved in the RTK/RAS/PI(3)K signaling
pathway, which is one of the core pathways altered in
the development of glioblastoma and was deduced by
the TCGA Research Network [2]. It should be noted
that because of the lack of CNV data, several genes
including CDKN2A, CDKN2B, CDK4 and MDM2 were
not identified.

Conclusions
In this paper, iMCMC is presented to integrate somatic
mutations, CNVs and gene expressions to detect mutated
core modules in cancer. Unlike previous approaches
exploring pathways or modules, iMCMC does not use any
prior information such as human PPI networks and
known pathways. We apply iMCMC to the GBM and
ovarian carcinoma datasets and identified five and two
mutated modules respectively. Many of the detected genes
have been reported to be implicated in carcinogenesis and
some modules are involved in known pathways. For exam-
ple, CDKN2B and CDK4 as well as EGFR and NF1 are
involved in the RB and RTK signaling pathways, respec-
tively and the CCNE1, MYC and RAD52 module in ovar-
ian carcinoma is involved in cell cycle.
For further improvement of the integrative network

M and the optimization algorithm in iMCMC, two

Figure 4 The first module identified by iMCMC in the ovarian carcinoma data and locations of the detected genes in known pathways.
(A) All pairs of genes in this module are highly mutually exclusive with values more than 0.90. (B) The detected genes MYC and CCNE1 are in the cell
cycle pathway. The dense dashed line represents pair of genes with exclusivity more than 0.90 and correlation larger than 0.20. RAD52 plays a central
role in genetic recombination and DNA repair, and is not only highly exclusive but also correlated with MYC and CCNE1.
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parameters, i.e., k and l, should be further explored. A
typical feature of our method is to employ two parameters
to balance not only different sources of data but also the
vertices and edges of the weighted network. This provides
flexibility for using the method because one can choose
different parameters to emphasize on specific factors. It
should be noted that different choices for parameters may
result in slightly different results. This needs further con-
sideration in practice based on actual data.
For comparison, we tested the proposed method on

datasets integrating only two kinds of data, i.e., somatic
mutations and CNVs or expressions. The results indi-
cate that gene expressions or CNVs indeed provide
extra useful information to the original data for the
identification of mutated core modules in cancer.
In conclusion, our findings provide several candidate

core modules recurrently perturbed in GBM or ovarian
carcinoma for further studies. Our integrative method,
iMCMC, will be a helpful complementary tool in the
identification of cancer pathways and as a general meth-
odology with practical significance, it has a potential to
be employed in cancer research.

Materials and methods
Data sets
The GBM and ovarian carcinoma data were downloaded
from TCGA website (https://tcga-data.nci.nih.gov/tcga/)

in December, 2011. We used three kinds of data: somatic
mutations, DNA copy number variations (CNVs), and
gene expressions. We considered only the data from level
3. The GBM dataset contains CNVs in 1269 genes span-
ning 169 glioblastoma samples, gene expression profiles in
11861 genes in 202 samples and nucleotide sequence aber-
rations in 343 genes in 135 samples. For the ovarian carci-
noma dataset, these three kinds of data are in 966 genes in
559 samples, 11864 genes in 489 samples and 8431 genes
in 320 samples, respectively. All these data are primary
materials required to construct the integrative network for
further analysis. First, a matrix A0 is generated by identify-
ing common samples with somatic mutations and CNVs
and merging their genes over the common samples. A0 is
binary: if any mutation occurs in a given gene in a particu-
lar sample or if the given gene is in a statistically signifi-
cant variation region of the particular sample, which is
determined by GISTIC [50], then the mutation is assigned
the number 1; if these criteria are not met then 0 is
assigned. A mutation matrix A is then obtained by redu-
cing the size of A0 by combining genes that are mutated in
the same samples into larger ‘metagenes’. An expression
matrix B is obtained by using the method described pre-
viously [37]. B is a real matrix with each of its entries
representing relative expression of a given gene in a parti-
cular sample. For all these matrices, rows and columns
correspond to samples and genes, respectively.

Figure 5 A comparison of the GBM data with or without gene expressions. (A) When all three kinds of data are used, the identified
module has high exclusivity and relative correlation between TP53 and MTAP. (B) When gene expressions are not used the detected module is
not as exclusive as before.

Table 1 Modules identified when only somatic mutations and gene expressions are used

Module Gene p-value for exclusivity Related to GBM Reference

1 EGFR, NF1, PTEN, PIK3R1, TP53 0.01 all the genes [49] and the references wherein

2 COL6A2, DST, ERBB2, PIK3CA, RB1 <0.001 all except DST same as above

3 PRAME, SYNE1 <0.001 both genes same as above
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The main idea of this study is to integrate three kinds
of data resources described above via a network frame-
work and identify mutated core modules in cancer by
an optimization model and the following statistical tests.
The preliminary version of this method was recently
proposed in [49] for GBM somatic mutation and gene
expression integrative analysis. For the completeness of
this paper we describe the approach with some improve-
ments in the following.

Construction of an integrative network M
With the above data, we constructed an integrative net-
work based on which an optimization model can be
built to detect oncogenic modules and pathways. The
construction procedure contains three steps.
The network based on gene expression
In this step a network based on gene expression called
Expression Network (denoted by EN) is constructed. EN
is weighted both for its edges and vertices, where each
vertex denotes a gene, and each edge is the correlation
between expressions of two vertices (genes). Weight of
each vertex reflects the extent of the influence of a gene
mutation on the expression of other genes.
We notice that genes in A and B may be different and

so the common genes are identified first. Let (G1, S1) and
(G2, S2) be the sets of genes and samples contained in the
two matrices, respectively. G0 and S are set as G0 = G1 ∩
G2 and S = S1 ∩ S2. For any gene i Î G0, the samples in S
are classified into two groups according to the binary
mutation vector of i from the mutation matrix A, and the
corresponding numbers of samples are denoted as n(1)i
and n(2)i

, respectively. Moreover, based on the elements
in A and B we set e(1)i = {bki : aki = 1, k ∈ S} and
e(2)i = {bki : aki = 0, k ∈ S}, and so a mutation-correlated
expression vector ei = (e(1)i , e(2)i ) can be obtained. Then
p-values for all genes in G2 are calculated using the pro-
gram mattest in MATLAB toolbox to evaluate the
extents of differential expression of these genes related to
i’s mutation status. A prerequisite for this procedure is a
minimum number of 2 for samples in the two groups.
Therefore, the vertex set of the expression network EN is
G where

G = {i ∈ G0 : n(1)i ≥ 2,n(2)i ≥ 2}.
For any gene i Î G, the vertex weight of EN can be

defined as:

fi = 1 − 1/d
d∑
r=1

pr ,

where d is the number of genes in G2, and pr is the
p-value of differential expression of gene r relative to i’s
mutation status. This means that smaller the p-values

stronger the influence of a gene mutation on others. That
is, it is more likely to be a driver that should be given
greater weights.
For any two genes i and j in G, the edge weight uij is

defined as the absolute value of Pearson correlation
between ei and ej among the samples in S. Note that
corresponding to metagene, weights of the vertex and
edge in the expression network are obtained from
averages of the values of related genes.
The network based on somatic mutations and CNVs
Based on the mutation matrix A generated from somatic
mutations and CNVs, a Mutation Network (MN) can be
constructed. To hold the same vertex set as in the expres-
sion network EN, the same gene set G is used to construct
MN. For any gene i Î G, mi denotes the number of muta-
tions in i across the samples in the mutation matrix A, i.e.,
mi =

∑
r ari. The vertex weight is defined as

hi = mi/m,

where m is the number of all samples in A. For any
pair of genes i and j in G, the edge weight vij is defined
as the number of samples in which exactly one of the
pair is mutated divided by the number of samples in
which at least one of the pair is mutated in A. The ver-
tex weight is a measure of mutation coverage and the
edge weight is a measure of mutual exclusivity.
The integrative network
An integrative networkM can be obtained by synthesizing
the expression network EN and the mutation network
MN.
We observed that in EN or MN the vertex and edge

weights have different measurement levels. To balance
these two terms, we defined f = max fi and u = max uij in
EN and similarly, h = max hi and v = max vij in MN. We
set ξ = u/f, and h = v/h. Let F = {fi} and U = {uij} denote
the sets of vertex weights and edge weights in EN, respec-
tively (similarly, H = {hi} and V = {vij} in MN). Then U
and ξF (similarly, V and hH) have balanced values.
While integrating the two networks more importance

can be given to MN than EN when gene expression values
are considered to contain noises. Thus a parameter k is
introduced to reflect the relative importance of MN rela-
tive to EN. Set δ · (u/v) = k, then δ = k/(u/v). In this paper
k = 1 is used.
The integrative network M with edge weights wij and

vertex weights ci can be defined as follows:

wij = δ. uij + vij, ci = δξ · fi + η · hi, (1)

i, j = 1, · · · ,n,
where n is the number of genes in G. From the above

discussion it is clear that ξ and h can be directly

Zhang et al. BMC Systems Biology 2013, 7(Suppl 2):S4
http://www.biomedcentral.com/1752-0509/7/S2/S4

Page 9 of 12



determined by the EN and MN networks, which is also
similar for δ once k is preassigned.

An optimization model for detecting coherent
subnetworks
For the integrative network M, our goal is to extract
some modules (subnetworks) with high weights in both
edges and vertices. We used the previously reported
optimization model [51] for this purpose. With wij and
ci defined as in Eq. (1), the model is as follows:

max
∑

i

∑
j
wijxixj + λcixi,

s.t. xβ

1 + xβ

2 + · · · + xβ
n = 1,

xi ≥ 0, i = 1, · · · ,n,
(2)

where the n-dimensional non-negative vector x = (x1,
x2, ..., xn), determined by solving the optimization
model, represents the degree of each vertex that belongs
to a specific subnetwork. The first term in the objective
function measures the interconnectivity within the sub-
network, while the second term measures the degree of
association between vertices and the subnetwork. In the
model, a positive parameter l is introduced to balance
these two terms.
On the other hand, a trivial solution will be obtained

when model (2) is unconstrained where all vertices from
the original network can be included into the subnet-
work, so a regularization constraint should be intro-
duced to limit the number of vertices selected. This is
the role of b which can adjust the strength of regulariza-
tion applied to the variable x = (x1, x2, ..., xn). b = 2 is
an attractive option in many cases since the optimiza-
tion of a quadratic function over a sphere is polynomi-
ally solvable in contrast to general non-convex
programming [52] but tends to select all vertices in the
network to the final subnetwork. The L1-type constraint
when b = 1, leads to a sparse solution, i.e., many of the
entries in the final optimal solution x will be zeros [53].
In general, we use b = 1 in model (2) to extract small-
sized subnetworks from a larger network.
The optimization model (2) can be easily solved by

quickly finding a local maximum from a predetermined
initial solution using the following iterative algorithm [51]:

xt+1i =
(
xti

2(WX)i + λci
2XTWX + λ

∑
i cix

t
i

) 1
β

, (3)

where W = (wij ) is the n × n edge weight matrix, and
X = (xt1, x

t
2, · · · , xtn)T is the n-dimensional solution vector

at time t. Algorithm (3) is convergent and the non-zero
entries in solution x (determined in practice as entries that
are greater than the cutoff, 0.1 is used in this study) define
a certain subnetwork (module). After one locally optimal

solution is obtained, these corresponding vertices are
eliminated from the network, and the whole procedure is
then iterated, i.e., we solve another locally optimal solution
and its corresponding subnetwork based on the new
network.

Significance test of the subnetwork (module)
We performed a random test to assess the significance
of the results. For a selected subnetwork SN with b ver-
tices, we obtained a quantity C which is the sum of all
vertex weights and edge weights involved in SN. Then
we randomly selected b vertices from the original net-
work and obtained a similar quantity CR. This proce-
dure is repeated 1,000 times and the number r of CRs
which is larger than C can be calculated. The significant
p-value of SN (denoted as p1) can be obtained from the
quantity of r divided by 1,000.

Mutual exclusivity test of the subnetwork (module)
After a subnetwork passes the significance test, the follow-
ing step is performed to evaluate whether it exhibits a pat-
tern of mutually exclusive genomic alterations. For this we
used the ‘switching permutation’ method proposed by Cir-
iello et al. [17], which adopts a Markov chain Monte Carlo
permutation strategy based on random network genera-
tion models.
Furthermore, although a subnetwork SN with b (b >2)

vertices is not significantly mutually exclusive, we cannot
exclude the possibility that one of its subsets is. In this
case we can reduce the scale of the subnetwork sequen-
tially, that is, a subset SN′ of size b − 1, contained in SN,
is selected which is more likely to be significant among all
the subsets of SN with b − 1 vertices. This can be realized
by choosing the paired vertices with the smallest exclusiv-
ity and removing one vertex with the smaller entry value x
in the solution of (3). This process is repeated until either
of the two conditions is reached: SN′ is significantly
mutually exclusive or b = 2. In this study, p2 denotes the
exclusivity p-value for concise description.
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