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Abstract

Background: Many problems in biomedical research can be posed as a comparison between related samples
(healthy vs. disease, subtypes of the same disease, longitudinal data representing the progression of a disease, etc).
In the cases in which the distinction has a genetic or epigenetic basis, next-generation sequencing technologies
have become a major tool for obtaining the difference between the samples. A commonly occurring application is
the identification of somatic mutations occurring in tumor tissue samples driving a single cell to expand clonally. In
this case, the progression of the disease can be traced through the trajectory of the frequency of the oncogenic
alleles. Thus obtaining precise estimates of the frequency of abnormal alleles at various stages of the disease is
paramount to understanding the processes driving it. Although the procedure is conceptually simple, technical
difficulties arise due to inhomogeneous samples, existence of competing subclonal populations, and systematic
and non-systematic errors introduced by the sequencing technologies.

Results: We present a method, Statistical Algorithm for Variant Frequency Identification (SAVI), to estimate the
frequency of alleles in a set of samples. The method employs Bayesian analysis and uses an iterative procedure to
derive empirical priors. The approach allows for the comparison of allele frequencies across several samples, e.g.
normal/tumor pairs and more complex experimental designs comparing multiple samples in tumor progression, as
well as analyzing sequencing data from RNA sequencing experiments.

Conclusions: Analyzing sequencing data through estimating allele frequencies using empirical Bayes methods is a
powerful complement to the ever-increasing throughput of the sequencing technologies.

Background
High-throughput sequencing (HTS) has become one of
the most important tools in the arsenal of biomedical
researchers in their quest for understanding the founda-
tions of diseases with a strong genetic component like
cancer [1]. Sequencing technologies have significantly
increased the amount of data produced by a single run
of an instrument with their modern high-throughput
versions producing more than 1Tb in a single run.
Thus, in the case of the human genome, the scale of the
sequencing experiments has been pushed into the realm
of whole-exome [2,3], whole transcriptome [4,5], and

even whole-genome studies [6,7]. The sheer volume of
this data combined with the inherently random aspect
of the sequencing process conspire to introduce uncer-
tainties in the output of the experiments. Furthermore,
the intricate chemistry of the novel sequencing instru-
ments often results in systematic errors, which can
make artifacts indistinguishable from actual genetic
lesions. Although detecting such sources of non-random
errors is an important part of analyzing the data pro-
duced by sequencing experiments, the purpose of this
paper is to develop a framework for the correction of
the random component in the noise introduced by the
sequencers. Furthermore, our goal is not to establish the
biochemical sources of those errors, but to develop a
statistical approach applicable in diverse scenarios in
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which the assumption about the random nature of the
source of errors holds.
A major application of HTS is to compare related sam-

ples, e.g. healthy vs. disease or various stages in the pro-
gression of a disease, based on their genetic makeup.
Many such examples are provided in cancer research,
where identifying the genetic or epigenetic lesions that
contribute to the oncongenic process is an important step
towards better diagnosis, evaluation of prognosis, and
treatment of the disease. Thus HTS has become a power-
ful unbiased approach to delineating the landscape of
genetic alterations in different tumor types [8,9]. An often-
applied technique involves identifying aberrant somatic
alleles fixed in a population of cancer cells, which are
absent from a control sample. The wisdom behind this
technique is based soundly on the observation that the dri-
vers of oncogenic processes are fixed by the clonal expan-
sion [10]. From a more general perspective, and in
addition to making a digital (binary) present/absent call,
one could strive for identifying the frequency of alleles in a
given population of cells. The importance of this analysis
to cancer research is immense since low frequency alleles
can have a major contribution to the disease in later stages
[11], e.g. by conferring resistance to treatment. Further-
more, detecting low frequency alleles at an early stage of
the disease, and even before the disease has manifested
itself, can be crucial for its prognosis.
The comparison of two temporally ordered samples with

respect to the frequency of an allele could indicate either a
gain or a loss of that allele. Both of these alternatives
could be the cause (driver) or a consequence (passenger)
of the biological process driving the phenotype. For exam-
ple, a point mutation could inactivate the normal function
of a tumor suppressor gene and lead to the formation of
cells with a cancer phenotype (Figure 1, left). Alternatively,
the abnormal phenotype could be the result of a loss of
heterozygosity (Figure 1, right). Although, distinguishing
driver from passenger alterations is an important part of
the functional analysis of clonally expanding populations
of cells, detecting such events regardless of their direction
and relevance to the phenotype is the first step towards
such analysis.
Besides the clinical importance of diagnosing and treat-

ing cancer, having a detailed picture of the alleles present
at different stages of the evolution of a population of cells
is an important step towards understanding the intricate
biological processes underlying its existence. Several
approaches have been used to identify the genetic altera-
tions differentiating a set of related samples. Some meth-
ods [12,4] involve ad hoc thresholds on the number of
reads reporting a variant allele, their quality and/or the
total number of reads covering the position of the variant
allele to produce a binary present/absent call for that var-
iant. A comparison between different samples is then

based on differences in those calls (see Figure 1). Arbitrary
thresholds on the number of reads reporting a variant
introduce biases due to the uneven distribution of depths
along the genome. Such methods can miss variants which
have somewhat lower quality but high depth or lower
depth, but high quality. Furthermore, decisions based on a
discretized view of the data depend strongly on the level
of discretization and other parameters of the discretization
process. This could be a problem if the samples being
compared are not perfectly homogeneous, e.g. by contami-
nation or the natural presence of tumor cells in the con-
trol sample. Other methods [13,14] assume allele
distributions particular to a homogenous population of
diploid genomes. Similar to our approach, the algorithm
SNVMix [15] uses a Bayesian framework and is able to
identify variants in samples with different ploidy and
tumor cellularity. The algorithm employs an expectation-
maximization for constructing a prior.
In this paper we present the statistical Algorithm for

Variant frequency Identification (SAVI) developed in the
course of analyzing data from sequencing experiments
of cancer samples from nine Hairy Cell Leukemia
(HCL) patients and the corresponding paired normal
samples. The initial findings are published in [2]. The
algorithm is based on constructing Bayesian posteriors
distributions on allele frequencies and employs an itera-
tive procedure for constructing an empirical prior from
a given dataset. Having posterior distributions lets us
obtain a high credibility interval for the frequency of a
particular allele as well as estimates on its expected and
most likely value. In contrast to other applications of
Bayesian analysis to the problem of frequency estima-
tion, our prior is not fixed to belong to a predetermined
set that might not represent an accurate description of
the data. Our desire was to develop a method which is
more empirically grounded and governed by the data
itself as much as possible. With the advent of large data-
sets the significance of Bayesian methods using priors
based on empirical observations has increased [16,17].
Thus our goal to tailor the prior to the data was natu-
rally steered towards such considerations. Empirical
Bayesian methods have been applied before in the con-
text of gene expression in RNA sequencing experiments
[18] and estimates of positive selection in tumors [19].
Although, as outlined above, the techniques developed
in this manuscript are quite general, we focus here on
two important aspects of its application: detection and
genotyping of variant alleles in a population of cells and
comparing allele frequencies across different samples.

Results
The methods described in this paper were developed to
analyze the sequencing data from a study on HCL - a lym-
phoid malignancy in which bone marrow, spleen and liver
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are infiltrated by leukemic B cells showing abundant cyto-
plasm with characteristic “hairy” projections. In the study,
the exome of samples from peripheral blood leukemic
hairy cells and paired normal mononuclear cells from 9
HCL patients was sequenced with Illumina GAIIx and
HiSeq2000. Genetic material from the exome of those
samples was obtained by enrichment with SureSelect. The
mate-pair reads produced by the sequencer were aligned
to the hg18/NCBI 36.1 human reference using MAQ. On
average around 27M of the 28M exonic positions reported
in the NCBI 36.3 CCDS database were covered by reads
with an average haploid depth of 55. After filtering,
described next, on average 16K exonic positions were
determined to contain a variant. Of those, 2,500 were
novel (not recorded in dbSNP 130) and 1,900 were in
addition non-synonymous. Finally, across all samples a
total of 81 of the novel non-synonymous variants were
predicted to be somatic. These variants were compared
against a list of 121 tested variants 67 of which were con-
firmed to be somatic. Fifty-six of the confirmed somatic
variants were predicted and only 1 of the tested, but not
confirmed variants, was predicted.
To analyze the variants produced by the sequencer we

applied the Bayesian framework outlined in the Methods
section. As discussed there, for every potential variant
allele we obtained the number of reads confirming the
variant, the average Phred score of the nucleotides con-
taining the variant, and the total number of reads cover-
ing its locus. Assuming a binomial likelihood of the
variant depth given a particular allele frequency, total
depth, and a prior distribution on those frequencies, we
obtained a posterior distribution for the allele frequency
for every tentative allele using Bayes theorem. In the

following discussion, the priors and posteriors have pre-
cision 1% unless explicitly stated otherwise.
To construct a prior empirically we apply an iterative

procedure based on the observation that a prior appro-
priate to a given set of observations should predict the
empirically observed distribution of that data as a certain
marginal distribution. The iterative procedure derived
from this observation has as a fixed point a prior satisfy-
ing it. The details of the procedure are given in the Meth-
ods section. Figure 2 (left) shows the result of iterations
2, 5, and 10 of the procedure starting with a prior uni-
form over all frequencies. As can be seen, the priors
obtained from the procedure get consecutively better at
picking up the salient features of the allele frequency dis-
tribution particular to a diploid genome compared to a
haploid reference - most positions are homozygous for
the reference, a number of positions are heterozygous,
and that number is proportional to the homozygous
variant positions. Figure 2 (right) contains the Kullback-
Leibler divergence between every two consecutive priors
produced by the procedure. As can be seen in this plot,
in our case the procedure is converging to a fixed point.
Analyzing the convergence properties of this procedure
in more detail is certainly of high mathematical interest
but beyond the scope of this paper.
Figure 3 (left) shows the aggregation of the posterior dis-

tributions by adding the corresponding posterior probabil-
ities across all exonic locations. The figure contains two
plots: one in which the prior was assumed to be uniform
(in blue) and one (in red) which was obtained empirically.
At the scale of the figure, the aggregated posterior
obtained from the empirical prior exhibits a shift towards
frequency 0 (non-variant alleles) when compared to the

Figure 1 High-throughput sequencing data provides information about the frequency of an allele in a population of cells. The
numbers in parentheses are the 5% confidence interval. Depending on parameters, discretization might distort our perception of the data (left).
Alleles can be gained by point mutation (left) or lost by LOH, e.g. copy-neutral LOH (right), in the evolution of the population.
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aggregated posterior obtained from the uniform prior.
Considering that a posterior obtained from the uniform
prior peaks at the observed frequency of the allele, we can
say that the empirical prior shifts the posteriors of alleles
with low frequency towards the 0 frequency since the
empirical prior gives more weight to that frequency. The
fact that the 0 frequency gets more weight in the empirical
prior as compared to the uniform is expected, since most
alleles are homozygous and equal to the reference. Thus
the information accumulated from all locations is lever-
aged in a particular locus as an additional corrective factor.
This ability of the empirical Bayesian framework to borrow

information from all experiments in the decision for a par-
ticular experiment and to shrink the observations towards
a common mean is considered one of its strongest theore-
tical and practical properties [17,20].

Detection of variants
Given the posterior distribution for the frequency of an
allele we obtained the posterior probability that the allele
has a non-zero frequency. Our decision was to consider as
present variants whose posterior probability of having a
non-zero frequency was at least 1-10-6 (see the Methods
section for the choice of confidence cutoffs). Figure 3

Figure 2 Iterative procedure for constructing an empirical prior. Features particular to a diploid genome compared to a haploid reference
become pronounced (left). The procedure is converging to a fixed point (right).

Figure 3 Aggregated posteriors before filtering (left) and after filtering (center). Filtering at 2% frequency derived from locations present
in dbSNP removes potential sequencing artifacts (right).
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(center) shows in red the aggregated posterior obtained
from variants determined to be present with the criterion
that the hypothesis “frequency at least 1%” is credible at
the 1-10-6 level and using the empirical prior. The plot
also contains (in blue) the aggregated posterior corre-
sponding to the uniform prior. A comparison between the
two posteriors shows again the shrinking towards a com-
mon mean, this time towards the frequency 50% for het-
erozygous variants and towards 100% for homozygous
variant alleles. Also shown here are the aggregated poster-
iors for variants present in both the tumor and normal
samples (in black) and novel variants not documented in
the NCBI dbSNP130 database (in green).
Next we analyzed the performance of the 1% criterion

on positions reported in the dbSNP database. Figure 4
(left) shows the aggregated posterior of the dbSNP loca-
tions for which an allele has been determined present
with that criterion. In this figure such locations have
been split in two disjoint datasets - those present in
both the tumor and normal samples and those present
in only one of the samples. Our intuition is that that the
variants confirmed in both samples are more likely to be
genuine germline polymorphisms. An inspection of the
figure shows that the posterior distribution of variants
at known locations, which are detected in only one sam-
ple exhibits, a peak at low frequencies, confirming our
intuition that those variants are likely to be sequencing
artifacts. To remove such artifacts we considered the
option of raising the cutoff frequency in the filtering cri-
terion. More precisely, our strategy was to obtain for
every potential variant the highest frequency f for which
the hypothesis “frequency at least f” is credible a poster-
iori with confidence at least 1-10-6 - i.e. we obtained a
one-sided credible interval for that level. Next, for every
possible cutoff frequency we obtained the contingency
table for the test corresponding to the cutoff on that

frequency vs. the known polymorphic locations present
with frequency at least 1% with high posterior confidence
in both samples. We computed the mutual information
corresponding to that contingency table and chose the fre-
quency cutoff which maximizes it. In our case a frequency
cutoff of 2% was chosen. Figure 4 (right) shows the result
of this analysis and Figure 4 (center) shows the ROC curve
for the frequency cutoff parameter, where the chosen cut-
off frequency is marked in red. Finally, we revisited the
definition of presence of an allele and used a frequency
cutoff of 2% at posterior credibility level 1-10-6. The result
of this filtering is shown in Figure 3 (right). For compari-
son, in that plot we have also included the result of filter-
ing with frequency cutoff 1%, which was shown in red in
Figure 3 (center). From the plot it is evident that the cutoff
at 2% removes a small peak and some of the bulk at low
frequencies of the posterior distribution, which we
hypothesize are due to sequencing artifacts. A possible
extension iterates the process with the newly established
cut-off until the aggregated posteriors stop changing
substantially as measured, for example, by the Kullback-
Leibler divergence.

Detection of somatic variants
To detect somatic variants we extend the method of
detecting variants by obtaining a posterior probability for
each possible difference of frequencies. Figure 5 (left)
shows the aggregated posterior of the allele frequency
differences for locations not included in the NCBI
dbSNP 130 database and restricted further to variant
alleles resulting in a non-synonymous change in amino
acid. Those criteria were chosen because the goal of the
sequencing experiments was to detect nucleotides
changes relevant to the oncogenic process. The figure
has a spike at difference 0%, which is expected since the
majority of mutant alleles are germline variants present

Figure 4 Establishing frequency cutoff using known SNPs. SNPs present in both samples are more likely to be genuine (right). ROC curve for
a varying allele frequency cutoff (center). Obtaining a frequency cutoff by maximizing mutual information (right).
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in both samples at equal allele frequency. The figure also
contains smaller features at ±50% and ±100% due to
potential candidates for somatic mutations.
Similar to variant detection, the identification of somatic

alleles is based on choosing a suitable cutoff on frequency
difference. In the variant detection context our search for
suitable frequency cutoff was guided by the frequencies of
variants at known (as recorded in NCBI dbSNP 130) loca-
tions observed in both tumor and normal samples. To
establish a variant difference cutoff we leveraged the vali-
dation results of 121 potential somatic alleles 67 of which
were confirmed to be genuine somatic mutations present
only in the tumor samples.
The list of potential somatic alleles was chosen in the

following way. First, starting from a uniform prior on fre-
quencies 0%, 50%, and 100%, with the iterative procedure
outlined in the Methods section we constructed an
empirical prior for those frequencies. Next, amongst non-
synonymous variants whose locations do not appear in
dbSNP we selected those with posterior confidence of hav-
ing zero frequency in tumor at most 10-6 and a posterior
confidence of having non-zero frequency in normal at
most 10-6. Finally, we restricted our attention to the var-
iants having an observed frequency at least 25% in the
tumor and observed frequency at most 5% in the normal.
Those 121 variants were subjected to validation by a direct
Sanger sequencing, and 67 were confirmed to be present
in the tumor, but absent from the normal samples.
Figure 6 (left) shows the aggregated posterior distribu-

tion of frequency differences for the validated variants.

The variants, which were not confirmed, exhibited a bimo-
dal posterior distribution of frequency differences. This
feature was a consequence of the bimodal posterior distri-
bution of the tumor frequency distribution for those var-
iants due to the particular data (quality, variant and total
depth) for those variants. Informally, the data for those
variants was not sufficient to distinguish a posteriori
between the variant being absent or present. In retrospect
and having the validation results in which such variants
were not confirmed in the tumor, the ability of the poster-
ior to mark them as less reliable was remarkable.
To select a frequency difference able to distinguish

between the confirmed variants from those which were
not confirmed in the validation experiment, we performed
a mutual information analysis, similar to the one we used
to obtain a variant frequency cutoff in the context of
detection of variants. More precisely, for every possible
frequency difference cutoff we compared the variants
obtained at this cutoff with the result of the validation
experiment and chose the cutoff for which the mutual
information of the corresponding contingency table was
maximized. In this way, a cutoff of 10% on frequency dif-
ference was chosen. Figure 6 (center, right) contains the
details of this analysis and Figure 6 (left, in green) contains
the aggregated posterior of the validated variants, showing
an increase in frequency of at least 10% with high poster-
ior confidence. As designed, this cutoff was able to distin-
guish the confirmed from the non-confirmed variants
quite well, so we went back and filtered the novel non-
synonymous variants using this criterion. In addition, we

Figure 5 Aggregate posterior distribution of allele frequency differences for novel, non-synonymous variants before filtering (left) and
after filtering for a high-confidence difference of at least 10% (right).

Trifonov et al. BMC Systems Biology 2013, 7(Suppl 2):S2
http://www.biomedcentral.com/1752-0509/7/S2/S2

Page 6 of 11



filtered for variants for which a decrease of at least 10% in
allele frequency was observed. Our hypothesis was that
such variants might be due to a loss of heterozygosity,
which was confirmed subsequently. The aggregated pos-
terior distribution of the frequency differences of the fil-
tered variants is given in Figure 5 (right).

Conclusions
We have presented an empirical Bayesian framework for
estimating allele frequencies in a given sample and for
comparing such frequencies across samples. The method
constructs an empirical prior through an iterative proce-
dure with a fixed-point distribution predicting the empiri-
cally observed distribution on data as a marginal. Given
the prior, the method combines the data of a particular
position with Binomial likelihood to produce a posterior
allele frequency distribution. We use high credibility inter-
vals derived from that distribution to decide between the
competing variant present/absent hypotheses and distin-
guish alleles existing in the sample from variants intro-
duced as artifacts by the sequencing technology. For a
particular sample involving the study of a human/cancer
genome, the parameters of that decision can be inferred
from the variants present at locations polymorphic in the
human population. Finally, when confronted with a pair of
samples, we obtain a posterior distribution on the allele
frequency differences between them and detect the alleles
presenting a substantial differential. This differential can
constitute the appearance of oncogenic alleles, as well as a
loss of alleles, e.g. loss of heterozygosity, as a result of the
oncogenic process. In our work we used a set of validated
variants to deduce the cutoff on frequency difference and
have shown that the chosen cutoff distinguishes variants
confirmed to distinguish the samples, e.g. somatic variants,
from those which do not, e.g. germline variants. Regarding

cutoffs we can make the general comment that although
obtaining theoretical guarantees on those cutoffs is impor-
tant, in experiments in which subsequent independent
validation is available the stress is more on the cutoff para-
meter as setting a priority in the validation and leaving the
decision of a cutoff to be guided by the design and the
resources of the experiment.
This method was developed in order to analyze the

sequencing data from tumor and paired normal samples
from HCL patients and was successful in identifying
important somatic mutations present in the tumor sam-
ple. The goal of the project is to obtain the mutational
landscape of that disease and will be reported in a sepa-
rate publication. We saw the study as an opportunity to
explore the larger goal of estimating the frequency of
alleles in a population of cells. Our motivation for this
was enabled by the ability of the novel high-throughput
sequencing technologies to detect alleles at a growing
depth, and hence at a decreasing frequency. The impor-
tance of this to the future of biomedical research is
immense, since it will let us fine-tune to a higher preci-
sion our understanding of complex populations of cells.
More precisely, it will let us detect low frequency alleles,
which might have been or will be selected for a clonal
expansion in the evolution of that population. Further-
more, as is often the need in biomedical research, this
approach will let us study in finer detail the differences
between two samples as captured by their genetic
makeup. This is important in contexts in which impuri-
ties in the sample might confound a more coarsely dis-
cretized view of the data. Our conclusion is that the
approach to analyzing sequencing data through estimat-
ing allele frequencies using empirical Bayes methods is a
powerful complement to the ever-increasing throughput
of the sequencing technologies.

Figure 6 Establishing frequency cutoff using validated variants. Confirmed variants have higher frequency difference (left). ROC curve for a
varying frequency difference cutoff (center). Obtaining a difference frequency cutoff by maximizing mutual information (right).
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Methods
Bayesian framework
Consider a random source, which produces bits ("0"s
and “1"s) with probability/frequency of “1” equal to f.
Assume also a probability e of error in reading the bit.
Then the probability of observing a “1” is

(1 − e) f + e
(
1 − f

)
= f + e − 2ef

Assume a prior density p(f) of the frequency f and a
prior for the error e uniform on the interval [0, E] for a
fixed 0 ≤ E ≤ 1. A random experiment produces a string
of m bits with n “1"s. Assuming a binomial likelihood of
the data, the posterior density on (f, e) is

P
(
f , e

)
=

p
(
f
)

E · C (f + e − 2ef )n(1 − f − e + 2ef )m−n

where the constant C ensures that
∫
P

(
f , e

)
dfde = 1.

For the marginal posterior on f we obtain

P
(
f
)
=

p(f )
E · C

E∫

0

(
f + e − 2ef

)n(
1 − f − e + 2ef

)m−n
de

=
P(f )
C

Bn,m(f , f + E − 2Ef )

where

Bm,n (a, b) =
1

b − a

b∫
a
xn(1 − x)m−ndx

An event/hypothesis H is a set of frequencies. We com-
pute the prior p(H) and posterior P(H) of H, by summing/
integrating over the frequencies in H. Following the Baye-
sian framework, p(H) reflects our prior knowledge about
the hypothesis H and P(H) our belief in the hypothesis
after we have observed the data/evidence.
If {H1, ..., Hk} is a disjoint and complete set of hypoth-

eses, then
∑

i P(Hi) = 1 and we assume the hypothesis
with the highest posterior to hold. Alternatively, given a
confidence threshold a, we can find a set of hypotheses,
which are satisfied with confidence at least 1 - a. A par-
ticular choice for this set orders the hypotheses in
decreasing order of their posterior and then selects the
smallest l so that the total posterior weight of the top l
hypotheses is at least 1 - a.
A particular example of the above framework is obtained

by taking the prior to be concentrated on 0, ½, and 1 with
densities p0, p1/2, and p1, i.e.

p
(
f
)
= p0 · δ (

f
)
+ p1/2 · δ

(
f − 1/2

)
+ p1 · δ (

f − 1
)

Consider the hypothesis Hfair = {½} and Hfake = {0,1}.
Interpreting the random experiment as a sequence of m
coin flips of which n have come up “Heads”, the posterior

P(Hfair) reflects our belief that the coin we are observing
is fair.
In general, a random experiment can consist of k

independent pieces of data/evidence (n1, m1), ..., (nk,
mk). A hypothesis H in this setting is a set of sequences
of frequencies. For example, for a given frequency f the
hypothesis Hf = {f = f1 = ... = fk} consists of all sequences
which have all of their components equal to f. Since
hypotheses are sets, we can combine them with the
usual operations permitted on sets, i.e. union, set, and
intersection. Thus, to continue our example, we can
form the hypothesis Heq consisting of all sequences with
all components being equal, regardless of their common
value, as the union ∪fHf . We define the prior probabil-
ity p(f1, ..., fk) of a sequence of frequencies (f1, ..., fk) to
be the product p(f1)...p(fk) of the priors of its compo-
nents. Since the pieces of evidence are independent, we
obtain the posterior probability P(f1, ..., fk) of the
sequence to be the product P(f1)...P(fk) of the posteriors
of its components. The prior/posterior of a hypothesis
H is formed by summing the priors/posteriors of its
elements.

Genotyping a diploid organism
In sequencing data, each position observed by the
sequencing instrument acquires an independent piece of
evidence regarding the frequency of the allele at that
position. Diploidity means that for each position there
are three possible zigosity types: both homozygous and
equal to the reference genome (two alleles equal to the
reference), heterozygous (exactly one allele equal to the
reference), or both homozygous and different from the
reference genome (two alleles different from the refer-
ence). The reference genome in this case refers to the
particular genome to which the reads of the sequencing
experiment have been aligned. These three possibilities
correspond naturally to three possible frequencies 0, ½,
and 1 for the random experiment discussed in the gen-
eral section on the Bayesian framework, where the fre-
quency of a bit being “1” captures the frequency of the
non-reference/variant allele.
In a given sample, the data at a particular position con-

sists of the total number m of reads mapping at that posi-
tion and the number n of those reads confirming the
variant allele. We interpret the data (n, m) as the evi-
dence for the zygosity type of the particular position.
Following the Bayesian framework, we compute the pos-
teriors P0, P½, and P1 for the three possible zygosity types
and choose the type with highest posterior to be the type
of the position. The upper bound E on the error in read-
ing the nucleotide allele corresponds to the probability of
a non-systematic/random sequencing error. Letting Q to
be the average of the Phred scores provided by the
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sequencing instrument for all variant nucleotides map-
ping at the position, we set E to be 10-Q/10.

Detection of variants in diploid genomes
To detect the presence of a variant at a particular posi-
tion, we form two hypotheses one for the position being
a variant (heterozygous or homozygous) and one for the
position being a non-variant (homozygous for the refer-
ence), and consider their corresponding posteriors Pvar
and Pref.

Comparing variants across samples from diploid
organisms
The discussion so far has focused on the reads obtained
from the sequencing of a single sample. In the cancer
sequencing experiment discussed in this paper, we have
two types of samples for each patient: one from the can-
cer tissue and one from a normal tissue. The goal is to
set the variants obtained from the cancer tissue against
the background provided by the normal and obtain the
somatic variants which are present in tumor tissue, but
do not appear in the normal. Thus, the evidence for the
lineage type, i.e. germline vs. somatic, of the variant at a
particular position in the genome consists of the two
independent pieces of evidence for the zygosity type of
that position in the tumor and the normal tissue. Since
the data for the zygosity type is simply the total counts,
then the evidence for the lineage type is (nt, mt) and (nn,
mn). Using this data one can assign the posterior prob-
ability to the hypothesis that the variant is somatic to be

Psom = Pt,var × Pn,ref + Pt,ref × Pn,var

and then set the non-somatic posterior to Pnsom = 1 -
Psom.

Detection of variants in non-diploid genomes
An objection to the approach outlined so far is that
although the cancer genome descends from the diploid
human genome, the zigosity of a particular allele can be
distorted considerably by the oncogenic process, to the
point where the diplodity of that allele is dubious. For
example, it is known that wildly varying copy numbers are
an important characteristic of many cancer genomes.
Furthermore, impure samples containing several types of
genomes, e.g. mixture of tumor and normal cells, can pro-
duce non-diploid frequencies. To account for this, one has
to abandon the notion that alleles come in only three pos-
sibly frequencies, and allow for more possibilities in the
priors and posteriors. Further applications of sequencing
experiments, e.g. sequencing cellular transcriptomes or
experiments characterizing metagenomic samples, point
to the necessity of a wider vocabulary of allele frequencies.
To simplify our exposition, and since the resolution of

current sequencing technologies is rather limited, we

decided to consider as a possibility the set {0, 0.01, 0.02,
0.03, ..., 1} of frequencies with resolution 0.01. Under
this setting for a given position in the sequenced gen-
ome we have a hypothesis for every possible frequency f
of the non-reference allele with is corresponding poster-
ior Pf obtained from the data (n, m) for that position.
Given the posteriors probability of every possible fre-
quency, one can find the most likely and the expected
frequency. Furthermore, given a confidence threshold a,
we can obtain a credible interval such that the posterior
weight of the frequencies outside of this interval is at
most a.
The decision whether a variant allele is present is based

on selecting a frequency cutoff f and confidence threshold
a < 0.5 and then calling present the variants for which the
event “frequency at least f“ has posterior confidence at
least 1 - a. The frequency cutoff f can be chosen to be
equal to 1%, i.e. variant is present, if it has non-zero fre-
quency, or selected according to a set of validated variants,
for example from a paired SNP array analysis.

Comparing variants across samples from non-diploid
genomes
The setting can be extended to the comparison of two
samples in the following way. For every two frequencies f1
and f2 we can obtain their posteriors P1,f1 and P2,f2 accord-
ing to each of the samples. Then assuming that the sam-
ples are independent we can assign the posterior of the
pair Pf1,f2 to be P1,f1 × P2,f2. Next, for every difference Δ we
can form the posterior probability P� that the difference
f1 - f2 is equal to Δ, namely

P� =
∑

f1−f2=�

Pf1,f2

Finally, we can obtain the most likely and the
expected frequency difference, as well as a credible
interval for confidence level 1 - a. One can use those
posterior measurements to focus on a subset of the
alleles, e.g. somatic alleles, which differentiate the two
samples.
Similar to the case of detection of variants, the deci-

sion whether a variant allele has different frequency in
the two samples is based on selecting a frequency differ-
ence cutoff d and confidence threshold a < 0.5. If one is
interested only in variants in which the allele frequency
has increased, for example somatic point mutations,
then one can focus only on those variants for which the
event “frequency difference at least d“ has posterior con-
fidence at least 1 - a. If in addition the goal is to obtain
locations with a loss of allele, e.g. as part of obtaining
the loci of a loss of heterozygosity, then the event is
“frequency difference at least d in absolute value”. The
frequency cutoff d can be chosen to be equal to 1% or
adjusted to an existing set of validated variant positions.
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Construction of priors
The prior distribution is an essential component of the
Bayesian framework. Generally speaking, the prior cap-
tures our belief in a particular hypothesis before we
have observed the data. From a practical point of view,
when many repetitions of a random experiment are
available our belief should coincide with the frequency
of occurrence of the hypothesis.
For the application of this framework to sequencing

data of diploid organisms, a prior should capture our
knowledge about the relative prevalence of the three
zygosity types in the genome of the organism. Ignoring
our knowledge in that respect, we can set the prior dis-
tribution to be uniform over the three types. Concerning
a sequencing experiment focused on the coding part of
the human genome, a better-informed prior takes into
consideration that this part of the human contains
around 107 nucleotides, and that the average number of
variants (heterozygous and homozygous and different
from the reference) with respect to a reference genome
is around 104 [21]. Furthermore, considering that the
reference genome is given as haploid, whereas the data
is obtained from the diploid cancer/normal samples one
can show that the number of heterozygous variants is
expected to be twice as many as the homozygous ones.
This holds because fixing the order of the two homolo-
gues of the human genome, a heterozygous variant can
be located on either one, whereas for the homozygous
variant there is a single choice. This leads to a prior in
which the proportion of the three zygosity types is
roughly 103: 2: 1.
An empirical prior can be obtained if we acknowledge

that we have two samples from a patient - from tumor
and normal tissue. Hence one can estimate the propor-
tion of the three zygosity types from one of the samples
and use this estimate to form the prior for the other. In
addition to this, an empirical prior can be obtained
form previous sequencing experiment using the same
sequencing technology. This approach is applicable also
to the more general frequency setting.
More precisely, to obtain an empirical prior we use

that a sequencing experiment consists of multiple ran-
dom experiments - one for each location of the genome.
Thus an empirical prior based on a particular sequen-
cing experiment should reflect the allele distribution
observed in the genome by that experiment. Using that
in the Bayesian framework the prior and the likelihood
determine the distribution of the data as a certain mar-
ginal, the empirical prior derived from a particular
experiment should predict the distribution of the data as
observed in that experiment. In particular we must have
pe

(
f
)
=

∫
Pe

(
f |D)

Pe(D)dD where pe
(
f
)
is the empirical

prior, Pe
(
f |D)

the posterior based on that prior, and

Pe(D) is the empirically observed distribution of the
data. Thus we establish the following iterative procedure
for constructing an empirical prior. Let p0 be the prior
before the experiment. In the case of lack of prior
knowledge we can set p0 to be the uniform distribution.
Then on iteration i = 0, 1, . . . we set

pi+1
(
f
)
=

∫
Pi

(
f |D)

Pe(D)dD =
1
N

N∑
j=1

Pi
(
f |Dj

)

where summation is over all pieces of data and
Pi

(
f |Dj

)
is the posterior probability of frequency f based

on prior pi for the j-th piece of data. The empirical prior
pe is a stationary point of this process. In practice we
terminate the process as soon as there is no substantial
change in the prior. For the data obtained from the
sequencing the human exome and using frequencies of
resolution 1% we used around 10 iterations at which
point the Kullback-Leibler divergence between the con-
secutive priors was 0.0013 bits (see Figure 2).
In the case of the human genome the empirical priors

obtained in this way were similar to the theoretical prior
outlined above and exhibited the expected modes at 0.5
and 1 (variant alleles), and 0 (reference alleles). Further-
more, the frequency distribution in the vicinity of the
0.5 mode was observed to be fitted well by a beta distri-
bution. This empirical observation is consistent with the
classically established prescription for choosing the beta
distribution as a conjugate prior to a binomial likeli-
hood. Furthermore, the beta distribution was justified
because we observed that the depths follow a negative
binomial distribution, and hence the observed allele fre-
quencies are a ratio of such distributions, which is
approximated well by a beta distribution. As far as the
observed negative binomial distribution of the depths,
our conjecture is that this is related to the fact that
locally the depth distribution is Poisson, but that the
means of these Poissons vary widely due to the hetero-
geneity in the nucleotide content of the human genome
and are long tailed over the whole genome. Hence glob-
ally the depth distribution is a convolution of Poisson
distributions with a long tailed distribution of the
means, which is the nature of the negative binomial dis-
tribution. The variance of the beta distribution fitting
the distribution of the heterozygous alleles depends on
the ability of the sequencing technology to detect the
two alleles at a heterozygous locus: the more uncorre-
lated the observed frequencies of the two alleles the
wider the variance.

Choosing confidence cutoffs
Classically, the Bayesian framework prescribes the choice
between two competing hypotheses to the one with higher
posterior weight. In our case we follow this prescription

Trifonov et al. BMC Systems Biology 2013, 7(Suppl 2):S2
http://www.biomedcentral.com/1752-0509/7/S2/S2

Page 10 of 11



with the addition that we do not make a decision in the
case that the posterior weight of the more likely hypothesis
is not high enough. Our decision is justified by the observa-
tion that, assuming independent random experiments,
maximizing the posterior when deciding on a hypothesis in
each will maximize the posterior over all choices because
in this case the posterior over all choices is equal to the
product of the individual choices. This is not necessarily
true if the data is not independent and in this case a more
sophisticated analysis is necessary. Furthermore, restricting
our attention only to the experiments for which the most
likely hypothesis has a high enough posterior guarantees a
high enough overall posterior. We answer the question of
how high is high enough by noting that if for each experi-
ment the most likely hypothesis has a posterior confidence
at least 1 - a and we have N experiments, then the overall
posterior is at least (1 − α)N ≈ 1 − Nα. Thus to reach a
high enough overall posterior confidence, a reasonable pos-
terior confidence for each experiment can be obtained by
taking a proportional to the inverse of the number of
experiments in a manner similar to the Bonferroni correc-
tion in the frequentist setting.
Since for current estimates the human exome contains

around 107 nucleotides, in the case of sequencing experi-
ments related to that part of the human genome, when
deciding a posteriori between two competing hypothesis,
e.g. present/absent or germline/somatic, we can to take
a = 10-6 for each genomic location.
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