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Abstract

Background: Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher
complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a
transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-
specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a
database of motifs by seeking its similar motifs, merge similar TFBS motifs possibly identified by the same TF,
separate irrelevant motifs, or filter out spurious motifs. Therefore, a novel metric is required to seize slight
differences between irrelevant motifs and highlight the similarity between motifs of the same group in all these
applications. While there are already several metrics for motif similarity proposed before, their performance is still
far from satisfactory for these applications.

Methods: A novel metric has been proposed in this paper with name as SPIC (Similarity with Position Information
Contents) for measuring the similarity between a column of a motif and a column of another motif. When
defining this similarity score, we consider the likelihood that the column of the first motif’s PFM can be produced
by the column of the second motif’s PSSM, and multiply the likelihood by the information content of the column
of the second motif’s PSSM, and vise versa. We evaluated the performance of SPIC combined with a local or a
global alignment method having a function for affine gap penalty, for computing the similarity between two
motifs. We also compared SPIC with seven existing state-of-the-arts metrics for their capability of clustering motifs
from the same group and retrieving motifs from a database on three datasets.

Results: When used jointly with the Smith-Waterman local alignment method with an affine gap penalty function
(gap open penalty is equal to1, gap extension penalty is equal to 0.5), SPIC outperforms the seven existing state-of-
the-art motif similarity metrics combined with their best alignments for matching motifs in database searches, and
clustering the same TF’s sub-motifs or distinguishing relevant ones from a miscellaneous group of motifs.

Conclusions: We have developed a novel motif similarity metric that can more accurately match motifs in
database searches, and more effectively cluster similar motifs and differentiate irrelevant motifs than do the other
seven metrics we are aware of.
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Background
As one of the most important cellular functions, transcrip-
tional regulation determines the specific gene products in
a cell, upon which all the other cellular functions are
based [1,2]. Transcriptional regulation is triggered by the
binding of TF proteins to 6-25 bps (base pairs) specific
DNA sequences called cis-regulatory elements (CREs) or
transcription factor binding sites (TFBSs) in a gene’s pro-
moter region or remote regulatory regions such as enhan-
cers, silencers and insulators [3]. These TF-DNA
interactions in a cell form the transcriptional regulatory
network (TRN) of the cell [4]. In principle, TRNs of all
cell types of an organism are encoded in its genome, how-
ever, deciphering these TRNs from the genome sequence
turns out to be one of a very challenging tasks [5,6]. The
first step to this goal is to recognize all TFBSs in a genome
[5,7,8]. Although the binding sites of the same TF usually
have a certain conservative feature and the same length,
they can show some level of degeneration, and be located
in very long non-coding sequences, making their compu-
tational prediction very difficult [9]. A set of the same TF’s
conserved binding sites is always called a motif, which can
be verified by experiments or predicted by comparing a
set of DNA sequences potentially containing the TFBSs. A
lot of de novo motif-finding algorithms have been devel-
oped to identify TFBSs because they are often more con-
served than their surrounding DNA segments [9]. A
position frequency matrix (PFM) or a position-specific
scoring matrix (PSSM) is always employed to represent a
motif [9,10]. The two matrices are deformed from the
alignments of its individual binding site sequences, and
largely mirror the position binding preference of the corre-
sponding TF. Thus, we can use one of the two matrices to
scan the sequences potentially containing TFBSs to dis-
cover them [10].
After using motif finding tools to get some putative

motifs, we often want to infer the TFs affiliated to them
by looking for their matching motifs in a validated TFBS
motif database [11], or to cluster similar sub-motifs of
the same TF obtained by different methods to remove
redundancies or to form a complete motif [11-13]. More-
over, the motifs of a TF family also show some level of
similarity to form a familial binding profile (FBP) because
these TFs in a family belong to a structurally related class
[14,15]. Consequently, an efficient metric is desired for
measuring the motif-motif similarity in the applications
mentioned above. Most of current motif comparison
methods are divided into two parts: a column similarity
metric for comparing two columns which come from the
PFMs (or the PSSMs) of two motifs respectively, and a
pairwise alignment algorithm for the two motifs using
the column similarity metric and a penalty function for
gaps [11]. The metrics to measure column-to-column
motif similarity mainly include sum of squared distances

(SSD) [15,16], p-value of Chi-square (pCS) [17], average
log-likelihood ratio (ALLR) [18], average Kullback-Leibler
(AKL) [19], Pearson’s correlation coefficient (PCC) [20].
Either the Needleman-Wunsch [21] or the Smith-Water-
man [22] algorithms used to be applied to search for the
optimal alignment assuming an affine gap penalty func-
tion. Mahony et al. have built a web server STAMP which
integrated these metrics and alignment algorithms after
assessing them [11,23]. Besides these metrics along with
alignment algorithms, two alignment-free metrics for
comparing motifs, Mosta and KFV, were designed by Pape
et al. [24] and by Xu and Su [25], respectively. The two
alignment-free metrics and these in STAMP have been
evaluated by Xu and Su [25], in which the KFV method
was showed to be better than Mosta and the others.
Note that the seven metrics mentioned above only

employed PFMs. None of them uses the column informa-
tion contents (ICs) and PSSMs. In fact, if the total ICs of
two motifs are low, they may have high similarity score
due to high correlation between each pair of columns. So
if two motifs have columns with low ICs, we need to
delete these low IC columns before using these metrics
for the comparison. These metrics work well to cluster
similar motifs but can hardly separate true motifs from
spurious ones with low IC columns.
Here we presented a novel metric named SPIC (Similar-

ity with Position Information Contents) with better perfor-
mance for column-to-column motif comparison. In our
genome-wide TFBS motif prediction tools GLECLUBS [12]
and eGLECLUBS [13] for prokaryotes through comparative
genomics, a similar metric with ungapped alignment has
been proposed. In this paper, we improved the metric by
considering the different alignment algorithms with gap
functions. Especially, besides the PFMs and PSSMs, the
information content of each position was involved into the
SPIC metric. More specifically, for any two columns sepa-
rately from two motifs, SPIC first computes a score
between the PSSM multiplied by the IC of one column
and the PFM of the other column, and vice versa. The
similarity between the two columns is then defined based
on the results with normalization. When evaluated on the
datasets from STAMP [26], KFV [25], and GLECLUBS
[12,13], SPIC outperforms all the existing metrics for reco-
vering motifs by searching a database and grouping closely
related motifs.

Methods
Previous metrics
The STAMP tool contains five column similarity metrics.
The detail definitions of these metrics are summarized in
Table 1. In these definitions, for each column X of a
PFM, Xb denotes the probability of each base b, X the
average of Xb, NX the total counts of all bases, and NXb

the total counts of base b. N
e
Xb

= (NX · NXb)/N. qb denotes
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the background probability of each base b and is assumed
to be 0.25 for all bases. In the Asymptotic Covariance
(AC) metric designed by Pape et al. [24], the asymptotic
covariance between the counts N(m) of all binding sites
separately from two TFBS motifs and their reverse com-
plementary TFBSs in a m-length background sequence is
calculated (see Table 1). The KFV (k-mer frequency vec-
tor) metric, recently proposed by Xu and Su [25], first
converts each PFM of length k into a 4k-dimension com-
position vector and then use cosine angle to calculate the
similarity between the vectors of two motifs.

The SPIC Metric
Given a motif Mi composed of ni TFBSs with a length Li,
let Fi =

(
fi(b,X)

)
4×Li

be its PFM and Pi be its PSSM
defined as,

Pi =
(
Pi(b,X)

)
4×Li

=
(
log

pi(b,X)
qx(b)

)
4×Li

, (1)

where qx(b) denotes the probability of base b contained
in background sequences, pi(b,X) and fi(b,X) are the
probability and number of base b located at the column X
of Pi, respectively. Note that a pseudo-count is required
for calculating these probabilities. The definition of the
information content (IC) of column X is as below,

I(X,Pi) =
∑
b

pi(b,X)Pi(b,X) =
∑
b

px(b,X) log
pi(b,X)
qx(b)

. (2)

Given two PFMs F1 and F2 and two PSSMs P1 and P2
of two motifs M1 and M2 respectively, the similarity value
between two columns X and Y from M1 and M2 respec-
tively is computed by

Sim
(
M1(X),M2(Y)

)
= min

{
1,

max{S (
P1(X), F2(Y)

)
, S

(
P2(Y), F1(X)

)}
max{S (

P1(X), F1(X)
)
, S

(
P2(Y), F2(Y)

)}
}
, (3)

where

S(Pi(A), Fj(B)) = I(A,Pi)
∑
b

(
fj(b,B) · log pi(b,A)

qi(b)

)
. (4)

In the formula (4), the column ICs are used to enhance
the effect of the columns of a motif with high information
and weaken the influence of the columns with low infor-
mation on the similarity score. It must be noted that the
formula (4) indicates the likelihood of Pi(A) generating Fj
(B). The denominator used to normalize the scores in the
similarity function (3) is generally the upper bound of the
numerator. In rare instances, the numerator in function
(3) may be greater than the denominator, so the number
“1” is also used to normalize the scores.

Pairwise column alignment
To compute the similarity between two motifs, we first
need to make an alignment between their columns. We
consider both local and global alignments between two
motifs that are similarly defined as in the pair-wise
sequence alignments [11]. Let Ω(M1(X), M2(Y), G) be any

Table 1 The definitions of six metrics used for motif comparison.

Similarity metric Formula References

Average log-likelihood ratio (ALLR) ALLR(X,Y) =

∑
b
NXb

(
Yb
qb

)
+

∑
b
NYb

(
Xb

qb

)
∑
b
(NXb +NYb)

Wang and Stormo [18]

Average Kullback-Leibler (AKL) AKL(X,Y) = 10 −

∑
b
Xb log

Xb

Yb
+

∑
b
Yb log

Yb
Xb

2
Kullback and Leibler [19]

Sum of squared distances (SSD) SSD(X,Y) = 2 −
(∑

b

(Xb − Yb)
2

)
Schones et al. [17]

1-p-value of Chi-square (pCS) χ2(X,Y) =
∑
b

(NXb − Ne
Xb
)2

Ne
Xb

+
∑
b

(NYb − Ne
Yb)

2

Ne
Yb

Schones et al. [17]

Pearson correlation coefficient (PCC) PCC(X,Y) =

∑
b
(Xb − X)(Yb − Y)√∑

b
(Xb − X)

2 ∑
b
(Yb − Y)

2
Pietrokovski [20]

Asymptotic Covariance (AC) AC(A,B) = lim
m→∞m−1cov (NA(m) +NA′(m),NB(m) +NB′(m)) Pape et al. [24]
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alignment between two motifs M1 and M2 with gaps G,
where column X of M1 is aligned with column Y of M2.
The similarity score between motifs M1 and M2 with the
alignment is defined as,

S (M1,M2,�) =
∑

all aligned
pairs(X,Y)

Sim
(
M1(X),M2(Y)

) − g(G),
(5)

where Sim
(
M1(X),M2(Y)

)
is the similarity between the

two aligned columns M1(X) and M2(Y) and computed by a
column similarity metric, and g(G) is a gap penalty func-
tion. So the motif-motif similarity score is defined as the
score of the best alignment between motifs M1 and M2, i.e.,

Sim (M1,M2) = max
�

Sim (M1,M2,�) . (6)

For a given column similarity metric, we compute the
similarity score between two motifs using the Needle-
man-Wunsch (NW) global alignment algorithm [21] or
the Smith-Waterman (SW) local alignment algorithm
[22], assuming an affine gap penalty function with the
gap-extension penalty being half of the gap-opening pen-
alty. An extended SW alignment algorithm without gaps
is also evaluated. Furthermore, an empirical p-value is
assigned to the similarity score to measure the likelihood
between two aligned motifs [15].

Datasets of motifs
In this study three dataset of motifs verified by experi-
ments are employed for testing and evaluation purpose.
Dataset-1, first chosen from JASPAR by Mahony et al.
[11], is composed of 96 true motifs which belong to 13
known TF structural classes. Among these motifs, 25
motifs belong to the Zinc-Finger (ZF) family. Dataset-2,
created by Xu and Su [25] for testing the outstanding
ability of the KFV metric to identify redundant PFMs, is
composed of 124 JASPAR core motifs and three sub-
motifs for each core motif by randomly selecting its
two-thirds of sequences. Dataset-3, available at: http://
gleclubs.uncc.edu/pbs, contains about 105 putative motifs
that were predicted in our earlier work [12,13] from
more than two thousand sets of genome-wide ortholo-
gous intergenetic sequences in E. coli K12 and other 54
reference genomes of gamma-proteobacteria. Referred to
the database RegulonDB (version 6) [27], these predicted
motifs cover 1,411 known TFBSs of 122 true motifs (or

TFs) in E. coli K12. More details of the three datasets are
summarized in Table 2.

Implementation of metrics
The seven metrics (PCC, AKL, ALLR, pCS, SSD, AC, and
KFV) listed in Table 1 were employed to compare with
SPIC for their ability to cluster relevant true motifs, filter
out fake motifs, or recover motifs from a database. We used
the STAMP platform for computing the first five align-
ment-dependent metrics scores http://www.benoslab.pitt.
edu/stamp/, the Mosta package included in SABINE for
computing the AC scores http://www.ra.cs.uni-tuebingen.
de/software/SABINE/downloads/index.htm, and the web
server of KFV for computing the KFV scores http://bioinfo.
uncc.edu/kfv/.

Performance assessing
In order to inspect the ability of these metrics to recognize
the motifs of the same TFs in Dataset-1 and Dataset-2, the
ROC (Receiver Operating Characteristic) curves were
plotted. In database searches, we define the “performance
accuracy” as the percent of motifs correctly recovered by
using the best-hit method. The ROC profiles were drawn
based on the rule described below. Given a dataset consist-
ing of n motifs whose TF structural classes are known, we
list all of n(n+1)/2 pairs of motifs and compute the simi-
larity scores of each pair using SPIC and the other metrics.
We set two motifs as a mismatch if the similarity score
between them is less than a threshold or a match, other-
wise. We call a match a true positive (TP) if the two motifs
belong to the same FBP , and a mismatch a true negative
(TN) if the two motifs belong to different FBPs. The ROC
curve is represented by the TP rate against the FP rate
under different motif similarity thresholds.

Results and discussions
Motif retrieval
Given the profile of a motif whose cognate TF information
is unknown, one of frequently used applications is to
search the motif in a database. A column similarity metric
associated with an alignment algorithm or an alignment-
free similarity metric is employed to compare the query
motif to each motif in the database. The motifs are “hit”
by the query motif if their similarity score are over a
threshold in the database [11]. However, the motifs of TFs

Table 2 Summary of the three datasets used for the evaluation in this study.

Number of true
motifs

Number of putative
motifs

Number of
classes

Average
length

True motifs
source

Data source

Dataset-1 96 0 13 10.39 JASPAR Mahony, et al., 2007 [11]

Dataset-2 124 0 Unknown 10.6 JASPAR Xu and Su, 2010 [25]

Dataset-3 122 105 Unknown 16 RegulonDB Zhang, et al., 2009 [12]

Zhang et al. BMC Systems Biology 2013, 7(Suppl 2):S14
http://www.biomedcentral.com/1752-0509/7/S2/S14

Page 4 of 8

http://gleclubs.uncc.edu/pbs
http://gleclubs.uncc.edu/pbs
http://www.benoslab.pitt.edu/stamp/
http://www.benoslab.pitt.edu/stamp/
http://www.ra.cs.uni-tuebingen.de/software/SABINE/downloads/index.htm
http://www.ra.cs.uni-tuebingen.de/software/SABINE/downloads/index.htm
http://bioinfo.uncc.edu/kfv/
http://bioinfo.uncc.edu/kfv/


either belonging to the same TF family or in a closely evo-
lutionary relationship show some degree of similarity
while the binding sites in a motif sometimes show highly
degenerate. So it is often difficult to distinguish similar
motifs and identify the required motifs precisely in a data-
base. The SSD, PCC and KFV metrics are chosen for the
comparison with SPIC for their capability of retrieving
motifs of a same TF family in Dataset-1. It is because that
SSD, PCC and KFV were shown to have the better perfor-
mance than the other three column similarity metrics
joint with an optimal alignment [11] and the alignment-
free AC score [25]. As described in Xu and Su [25], the
accuracy of a metric is calculated as the percent of motifs
whose TF families are “best hit” by the metric in a dataset
of motifs.
As evaluated by Mahony et al. [11], the PCC metric

combined with the SW ungapped alignment algorithm
(PCC/SWU), and the SSD metric combined with SW

alignment (SSD/SW) with gap extension equal to 0.5 and
gap open equal to 1, are the best two metric and align-
ment settings on Dataset-1 among the five column simi-
larity metrics associated with their all possible alignment
settings. According to Xu and Su [25], when 4-mer and
cosine angle are used for vector construction and com-
parison, the KFV results in the best results. Here we also
used the NW and SW alignment algorithms respectively
to test the SPIC with almost all of different gap open
penalties (gap extension is always set as half the gap
open). The top seven performing alignment strategies of
SPIC and the optimal strategies of PCC/SWU, SSD/SW
and KFV, are listed in Table 3. Among these strategies,
the combination of the SPIC metric and the Smith-
Waterman algorithm (SPIC/SW) with gap open equal to
1 achieves the highest accuracy on Dataset-1. The results
in Table 3 show that SPIC has more superior strategies
than the other metrics.

Table 3 Comparison of top 7 performing alignment strategies of SPIC with the best strategies of existing methods for
motif retrieval on Dataset-1.

Accuracy

Strategy ZF PFMs(25) Non-ZF PFMs(71) Total(96)

SPIC/SW(gap open = 1.00) 0.620 0.921 0.841

SPIC/SW(gap open = 0.75) 0.613 0.918 0.837

SPIC/SW(gap open = 0.50) 0.614 0.916 0.837

SPIC/SW(gap open = 1.50) 0.605 0.916 0.835

SPIC/SW(gap open = 0.25) 0.606 0.915 0.835

SPIC/SW(ungapped) 0.610 0.916 0.836

SPIC/NW(gap open = 1.0) 0.585 0.793 0.731

KFV(4-mer, cosine angle) 0.600 0.915 0.833

PCC/SWU 0.600 0.887 0.813

SSD/SW 0.560 0.859 0.781

The last three columns are the results for the zinc-finger (ZF), non-ZF, and total families, respectively. The performances of SSD/SW and PCC/SWU are quoted
from the STAMP [11]. The data of KFV are quoted from [25]. Gap extension is equal to half the gap open.

Figure 1 Evaluation of the three motif similarity metrics using ROC analysis on Dataset-1 and Dataset-2.
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For further comparison of our best strategy SPIC/SW
(gap open = 1) with the strategy PCC/SWU which has the
best performance in STAMP and the optimal strategy of
KFV (4-mer, cosine angle) for recovering motifs from a

dataset, we do ROC analysis of the three strategies’ per-
formance on Dataset-1 and Dataset-2. As exhibited in
Figure 1, SPIC/SW (gap open = 1) performs more out-
standingly than the two strategies PCC/SWU in STAMP

Figure 2 Comparison of SPIC with the seven existing methods for separation of relevant motifs from irrelevant ones on Dataset-3.
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and KFV (4-mer, cosine angle) for motif recovery on Data-
set-1 and Dataset-2.

Separation of true motifs from spurious motifs
In some algorithms for genome-wide prediction of tran-
scription factor binding sites based on phylogenetic foot-
printing such as GLECLUBS [12,13] and PhyloNet [16],
sub-motifs and redundant motifs of any TF are required
to be merged together into a unique motif, meanwhile,
spurious motifs are required to be discarded [12,13,16]. To
this end, we desire to get a metric that not only precisely
measures the pairwise motif similarity, but also effectively
differentiates irrelevant motifs. More specifically, the
desired metric can assign a similarity score high enough
for two sub-motifs of the same TF motif, and a similarity
score low enough for two motifs without any evolutionary
relationship to separate true motifs from spurious ones.
Dataset-3 generated by GLECLUBS [12,13] is composed
of massive amounts of spurious motifs and a tiny fraction
of true motifs. In order to discover true motifs from Data-
set-3, we need to evaluate the SPIC and the other seven
metrics for their ability to cluster sub-motifs of each TF
into a motif and separate true motifs from spurious ones.
For this purpose, we need a group of true motifs used

for evaluation on Dataset-3. 122 TF motifs of E. coli K12
in ReglonDB are picked out to generate plenty of sub-
motifs. For each TF motif consisting of n BSs (n ≥ 3), we
randomly split it into a sub-motif of size k and a sub-motif
of size n − k for each k ∈ {1, 2, ..., [n/2]}. So [n/2] pairs of
sub-motifs can be generated for a motif of size n. For each
sub-motif of size k, we repeat the foregoing split procedure
on each sub-motif to generate [k/2] pairs of sub-sub-
motifs (also called sub-motifs afterwards). The procedure
can be terminated when the size of each sub-motif is 1.
We then employ these metrics with their best strategies to
calculate the corresponding similarity scores between each
pair of sub-motifs [11,25] as well as the scores between
each pair of motifs in Dataset-3. As shown in Figure 2, the
curves labeled by “all pairs” are the distributions of the
similarity scores between each pair of motifs in Dataset-3
after score normalization, and the curves labeled by
“known inner” are the distributions of the normalized
similarity scores between each pairs of true sub-motifs.
Due to the relevance between each pair of true sub-motifs
and the irrelevance among most of the motifs in Dataset-
3, a metric with outstanding performance should depart
the curve labeled by “all pairs” from that labeled by
“known inner” very well. As shown in the charts of Figure
2, comparing the two curves generated by SPIC with these
by other metrics, we find that the two areas under SPIC’s
distribution curves have the smallest overlap. Specially, the
last chart of Figure 2 collects their overlapping rates which
demonstrate that SPIC has the highest performance

among these existing metrics in recovering true motifs
and separating them from spurious ones.

Conclusions
Because many applications contain the motif comparison
procedure, we proposed a novel similarity metric SPIC
based on column information contents. When used jointly
with the SW alignment algorithm, it achieves a better per-
formance than the best strategies of those existing metrics
in recovering motifs in a database, grouping relevant
motifs, merging sub-motifs or redundant motifs, or dig-
ging true motifs out of chaos.

Availability
The C++ program of SPIC including an example can be
downloaded freely from our home pages: http://bioinfo.
uncc.edu/szhang or http://it.tjnu.edu.cn/sqzhang.
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