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Abstract

gene subsets.

mixed and recovered using our approach.

Background: Contemporary high-throughput analyses often produce lengthy lists of genes or proteins. It is
desirable to divide the genes into functionally coherent subsets for further investigation, by integrating
heterogeneous information regarding the genes. Here we report a principled approach for managing and
integrating multiple data sources within the framework of graph-spectrum analysis in order to identify coherent

Results: We investigated several approaches to integrate information derived from different sources that reflect
distinct aspects of gene functional relationships including: functional annotations of genes in the form of the Gene
Ontology, co-mentioning of genes in the literature, and shared transcription factor binding sites among genes.
Given a list of genes, we construct a graph containing the genes in each information space; then the graphs were
kernel transformed so they could be integrated; finally functionally coherent subsets were identified using a
spectral clustering algorithm. In a series of simulation experiments, known functionally coherent gene sets were

Conclusions: The results indicate that spectral clustering approaches are capable of recovering coherent gene
modules even under noisy conditions, and that information integration serves to further enhance this capability.
When applied to a real-world data set, our methods revealed biologically sensible modules, and highlighted the
importance of information integration. The implementation of the statistical model is provided under the GNU
general public license, as an installable Python module, at: http://code.google.com/p/spectralmix.

Background

In biomedical sciences, experimental results often come
in the form of one or more gene sets, and biologists are
commonly tasked with the interpretation of these lists,
which can easily become overwhelming considering the
amount of data and number of data sources currently
available. Frequently, gene products carry out their func-
tion by working closely with the products of other
genes, which motivates the study of genes as a set,
instead of as individual units. We refer to these multi-
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gene units when carrying out one or more related biolo-
gical processes as ‘functional modules’. There are a
number of rationales for studying genes through a mod-
ular perspective [1-3]. Modules of genes may be inter-
esting because of physical interactions [4], common
subcellular location [5], or they may be meaningful
players in a system of interconnected biologically pro-
cesses. Whichever the case, it is of significant interest to
be able to hone in on interesting subsets of genes [6]
that perform coherent functions, particularly by making
use of multiple types of information sources [7].
Currently, a common approach to discovering func-
tional modules from a gene list is via the use of enrich-
ment-based methods [8-10], which determine if
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constituents of a predefined collection of gene sets are
observed more frequently than expected in the list.
Often, these predefined reference gene sets reflect a sin-
gle information source; for example, gene sets are com-
monly grouped according to annotations based on the
Gene Ontology (GO) to narrow the search based on one
or more known functions. The requirement of prede-
fined gene sets subjects the methods to limits imposed
by those who construct the gene sets, thus reducing the
chances of finding de novo coherent subsets. In situa-
tions where the nature of the interesting subsets is
unknown, data-driven methods are more suitable than
methods based on predefined reference sets. Addition-
ally, because evidence for gene-gene relationships within
a module may occur in different forms, a caveat of most
existing methods is that they do not consider the con-
nections across distinct biological aspects, and thus
would fail to identify diverse types of functional
modules.

Experimental methods and thus their resulting data
come in many diverse forms, and in light of this it
remains challenging to assess the functional coherence
of a group of genes by considering multiple biological
aspects. As an example, consider the following hypothe-
tical scenario: from protein-protein interaction data, we
find that protein A physically interacts with protein B,
and from a signal transduction database one learns that
protein B is a kinase that phosphorylates protein C. The
challenge is to find out that proteins A, B, and C are
functionally related in an automated way. Here, we
describe a novel approach for revealing functionally
coherent subsets ab initio from an arbitrary gene list by
assimilating information from multiple data sources.

There are two main challenges with combining het-
erogeneous information to identify functionally coherent
subsets from a gene list. First, storing and accessing
multiple information sources can be challenging for
organisms of modest to large genome size, for which we
implemented a web server to handle storage and facili-
tate access (See Supplemental Methods in the Addi-
tional File 1). Second, it remains an active research area
to encode diverse information regarding genes in a fash-
ion that enables identification of functional modules.
One notable method [11] that uses a Bayesian approach
to integrate heterogeneous data sources was devised for
the purposes of function prediction. The problem of
identifying functionally coherent subgroups is a related
but distinct problem to that of function prediction.

In this study, we represented genes as nodes of a
graph whose edges reflect functional relatedness among
the genes, based on available information regarding
genes. Then the task of identifying coherent gene sub-
sets is reduced to the task of finding highly connected
subgraphs from the graph, for which different existing
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graph-cut algorithms can be employed. Finally, it is
non-trivial to integrate information from multiple
sources in a unified manner such that coherence of the
gene subset is assessed utilizing all information. This is
particularly important because information from each
source can be limited but complementary to each other,
thus combining them can potentially enhance the over-
all performance of revealing coherent subsets. To this
end, we propose to use a spectral projection approach,
described in Figure 1, in which relationships between
genes are represented as graphs in different information
spaces (sources) and are further combined in kernel-
transformed space. Under such a setting, coherence sub-
sets were further refined using spectral clustering meth-
ods. This work represents the following methodological
contributions: First, we show that functional modules
can be recovered by applying a graph-cut algorithm,
presented as a form of the spectral clustering algorithm
originally introduced by Ng, Jordan and Weiss [12]. Sec-
ond, we demonstrate that combining data in kernel-
transformed space enhances the ability of the algorithm
to recover gene sets. Additionally, the method is recast
in a way to account for the potentially large percentages
of noise present in gene lists coming from experiments.
Finally, an application of the approach to gene expres-
sion data [13] revealed that many of the uncovered gene
subsets were biologically sensible in that they belong to
appropriate biological processes.

Results and discussion

In this section, we detail the results of a number of
simulation experiments as well as an example applica-
tion. Using a simulation approach, we examined the
algorithm’s ability to retrieve gene subsets, and specifi-
cally, we studied how the addition of new data sources
impacts performance. Then, we tested the usefulness of
our approach in recovering coherent gene set from
‘noisy’ gene lists as is often encountered in high-
throughput experiments. We then show the results of
applying our method to a real-world data set.

Discrimination of gene sets by spectral clustering

Given a gene list, our task is to identify functionally
coherent gene subsets. Here, we used simulation experi-
ments to evaluate the efficacy of spectral clustering for
this task. In the simulation experiments, a number of
functionally coherent gene subsets, ranging from 3-8,
was randomly mixed in multiple experiments, and our
method was then used to recover the original subset
partitions. We used pathways from KEGG database [14]
and protein complexes from the MINT [15] database as
‘known’ functionally coherent modules, in that the pro-
teins in these modules either perform related functions
or form physical modules.



Richards et al. BVIC Systems Biology 2012, 6(Suppl 3):57
http://www.biomedcentral.com/1752-0509/6/S3/57

Page 3 of 11

decomposition space, where the genes are partitioned.
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Figure 1 Conceptual diagram of analysis pipeline. In this example, information is combined to partition seven genes. A Input gene-gene
relationships are gathered from databases or via other approaches, like experimentation. B A web server is used to store, organize and provide
programmatic access to the data. C Given a gene list of interest, graphs are constructed with connections among the genes representing gene-
gene information for a given information source. D Graph edge weights are transformed into kernel space using gene-gene distances. The
affinity-weighted graphs are combined into a summarizing graph and subsequently the summarizing affinities are projected into eigen-

We performed a series of experiments by mixing an
increasing number of ‘known’ functionally coherent
gene sets, k, which was repeated with the given k 20
times. The experiments were carried out using the GO
annotations as the information source for the algorithm.
The results in terms of recall, precision and F; scores
are summarized for S. cerevisiae in Figure 2. Also,
shown in the figure are the results of randomly assigned
cluster labels as a control experiment.

The figure shows that the spectral clustering algorithm
significantly outperforms random cluster assignments,
and the difference becomes more obvious as k increases.
Overall, the trend for spectral clustering is that of
decreasing efficacy with increasing k, and in the case of
the GO precision and recall, both are similarly affected.
This decreasing trend is likely due to the fact that in
general, clustering tasks become more difficult as more
gene sets are mixed. An additional reason for the declin-
ing performance might be the fact that many metabolic
and signal transduction pathways, as well as molecular
complexes, are comprised of a mixture of functional
modules, or coherent gene sets, and thus assigning mod-
ules to an appropriate pathway is not a straightforward

task, especially as the number of modules and potential
pathways increases.

Information integration to enhance clustering

We then tested if information integration would further
enhance the algorithm’s ability to correctly partition
mixtures of genes. We used data from the Gene Ontol-
ogy (GO) and PubMed databases as the information
sources for this experiment. We also considered the
information pertaining to different species: Saccharo-
myces cerevisiae, Mus musculus and Homo sapiens, in
order to test the generalizability of spectral clustering
and information integration in this context. A total of
120 simulations were run for each species and each
combination of information sources, using both KEGG
and MINT as positive controls. The results are summar-
ized in Figure 3. If we use average F; scores to summar-
ize the performance under all simulations, the spectral
clustering algorithm performed better in each case when
data were combined than for either single-source ver-
sion. In general, simulations carried out on S. cerevisiae
had greater precision and recall than those done on H.
sapiens and M. musculus. The pattern is likely due to
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Figure 2 Evaluating the algorithm'’s discriminative abilities. Using simulations and spectral clustering as described in the methods, algorithm
performance is summarized by recall (A), precision (B) and F1 scores (C) as a function of increasing k. Each bar represents an average of 20
simulations, and for each value of k the same data and cluster assignments were used to find the shown recall, precision, and F; score. The dark
gray portions of each bar are the results if cluster assignments were randomly guessed. For these simulations the organism used was S.
cerevisiae, and the information source was the Gene Ontology. Standard error bars are included.
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the fact that the higher eukaryotes have larger genomes,
and correspondingly, the information available is sparser
when compared to the well-studied and genomically
smaller Baker’s yeast. Each bar is an average of 120
simulations ranging in specified k& from 3-8. We also
observed that the GO alone has better precision than
the literature alone for all species studied, and the com-
bination of GO and publications consistently performs
the best of the information sources.

The observed improvements in data partitioning due
to information integration is highly encouraging. The
results indicate that indeed, different information
sources contain distinct yet complementary information,
and efficient information integration techniques can be
employed to utilize such complementary information in
order to achieve a better gene set recovery. The kernel
fusion and transformation step in spectral clustering
(see equations 3, 4, and 5) provided a principled way of
integrating information in that the sum of two kernel
functions does not require exceptions and heuristics.

Our results show that spectral clustering performs bet-
ter using the GO as an information source in comparison
to gene co-mentioning data (PubMed). One possible
explanation is that information from the GO database is

‘richer’ in comparison to that of the gene co-mentioning.
It is easier to establish the relatedness among a pair of
genes in terms of function because many genes are anno-
tated in the GO databases, and our approach of revealing
functional relationships using the graphical representation
of the GO can easily assess the relatedness between a
pair of genes, even though they may be annotated with
different GO terms. We believe the strength of our
approach lies in the fact that it captures the functional
relationship between genes, by taking into account both
the structure of the GO and the strength of the relation-
ship using semantic distance. This observation may lead
to other possible approaches of representing the func-
tional relationship between genes; for example one could
use rigorous topic modeling of literature information that
are associated with a gene in order to capture the func-
tional relationships between genes [16,17]. On the other
hand, the gene co-mentioning data matrix is fairly sparse,
and not all information is directly relevant; thus, as an
information source alone, gene co-mentioning does not
perform well. Finally, a key observation from this experi-
ment is that, although an information source may not be
rich in information, it may be valuable if it is comple-
mentary to other information sources.
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Figure 3 Literature and Gene Ontology integration. The discriminative abilities as represented by recall, precision and F; scores, are shown
for the Gene Ontology, PubMed and combined simulations. Each subplot from left to right is a summary of 120 individual simulations for the
species S. cerevisiae, M. musculus, and H. sapiens, respectively. The rows correspond to simulations run with the KEGG and MINT positive control
modules. Each set of 120 simulations was comprised of a mixture of individual runs, where the number of pathways ranged from 3-8. Standard
error bars are given for each discriminative measure, and for each of the three species. Significance was tested for across the data source
combinations for each evaluator independently.

Discovering modules amongst noise

Biologists and experimentalists are accustomed to work-
ing under the assumption that there is at least a mini-
mal level of stochastic fluctuations in the accuracy of
experimental results. A key for analyzing biological
experimental results is to identify real signal from within
the ‘noisy’ data; in our case, to recover coherent gene
sets from data contaminated with noise. In this experi-
ment, we used MINT and KEGG derived gene sets (S.
cerevisiae), and we injected genes randomly selected
from the genome to serve as noise. The experiment was
repeated at seven levels of noise for 24 KEGG and 22
MINT gene sets. The goal was to run the algorithm,
without making an assumption for &, and check the abil-
ity to recover the original coherent subsets. Using

combined GO and PubMed data as information sources,
our algorithm broke each gene set into k clusters for
which each was then subjected to coherence testing
using the GOSteiner method [18]. Only statistically sig-
nificant modules were considered coherent. Based on
observed F; scores in Figure 4 we can summarize that
our procedure identified correct genes, while minimizing
false positives for minimal levels of noise contamination
(0-20%). At higher levels of noise the average perfor-
mance among gene sets drops to less desirable levels.
The pattern for KEGG and MINT gene sets is compar-
able, with MINT performing slightly better at high
(=250%) levels of noise. The levels of injected noise are
not the realized amount of noise, which are generally a
few percentage points lower, due to the fact that not all
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Figure 4 Recovering functional modules contaminated with noise. The original gene lists for KEGG and MINT (N = 22 and N = 24
respectively) were compiled and increasing levels of noise were added to each set, where each was then considered a new list. Spectral
clustering was run on each gene list and statistical significance based on functional coherence was determined for all the the underlying
modules. Statistically significant modules were assembled and together they made up the positively labeled genes. Shown here are the
averaged results of the gene sets, with standard error bars at each level of noise.
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genes have information with respect to the data sources.
Overall, this is an impressive result indicating that the
techniques in our procedure (spectral clustering, infor-
mation integration, determination of cluster number,
and finally functional coherence assessment) successfully
revealed the majority of the truly coherent genes even at
relatively high levels of noise.

To further evaluate the results, we plotted the indivi-
dual simulations as graphs, and inspected the calls made
by the algorithm (see Supplemental Results in the Addi-
tional File 1). From these observations, we see that, in
general, the false positive genes are weakly connected to
the rest of the true positive genes, which explains why
they were not included as part of the noise group. Also,
the true positive genes are generally highly connected,
in terms of edge weights, which indicates that spectral
clustering is capable of accurately capturing the related-
ness of functionally coherent genes, and our overall pro-
cedure is capable of dealing with noise inevitably found
in biological data.

Application to gene expression data

The proceeding sections provided both theoretical and
empirical rationales for using the proposed information
integration framework to mine large gene lists for

functional modules. To test the method with a real-
world data set, we chose to use a gene expression data
set that is well-studied [13,18,19]. The animal model is
the rdI mouse, which is a commonly used model [20]
for retinitis pigmentosa (RP), a disease characterized by
rod photoreceptor degeneration and apoptosis [21].
Recent work [22] provided guidance in creating the
gene set of interest (458 genes). Here, we tested the abil-
ity of our procedure to identify functionally coherent
subsets from this real-world data set, which is within
the range of small to moderately sized gene sets (N
<1000) often observed in experiments. The results are
summarized in Figure 5. For each information source
combination, the filtered set of genes was partitioned
using spectral clustering and each subset was subse-
quently tested for statistical significance using GOStei-
ner [18]. The results are summarized using a weighted
average of p-values with the p-value for a given gene
corresponding to that of its assigned cluster. All combi-
nations of data sources containing the gene expression
information source arranged the genes in to less func-
tionally coherent gene sets when compared to the other
information sources. Gene expression data likely does
not provide sufficient information regarding the function
of genes, based on the current state of data sources and
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Figure 5 Application to gene expression example. The genes of interest (458 total) were partitioned according to one or more information
sources and the resulting subsets were assessed for functional significance. Each bar designates an average of p-values for all 458 genes based
on a unique partitioning of the genes using one or more information sources. The publications (P), Gene Ontology (G), gene expression (E), and
combinations of each are shown. The standard error bars for the averaged p-value are shown for each clustering result and the traditional level

hence we do not suggest including it unless the study is
exploratory in nature. It is possible that gene expression
derived gene sets are quite meaningful functionally,
however it is difficult to evaluate uncharacterized gene
interactions. Interestingly, the GO alone is not the best
performing, which provides additional support for the
use of publications as an additional data source. For the
publications alone, we already know from the simulation
studies (see Figure 3) that we cannot expect robust sub-
set discovery, however in combination with other
sources the effect appears to be additive.

Conclusions

Overall, the methods presented in this paper allow for
efficient gene subset searching in both simulated and
the real-world data. Our approach should be of interest
to a spectrum of biologists: it can be used to sift
through large amounts of experimental data, and will
help the experimentalist to identify specific genes or
biological functions of interest. A method that effectively
partitions mixtures of genes into functional modules is
highly desirable in contemporary high throughput biol-
ogy, particularly in microarray studies. Our results show
the value of spectral clustering, and particularly informa-
tion integration in this setting. This research also

prompts new research avenues, including: the discovery
of additional informative data sources, and the adaption
of these techniques to other problems like the predic-
tion of gene function.

Methods

Sources of information

GO: an information source of functional relationships
between genes

The GO defines the relationships between annotation
terms in a hierarchical way, using expert knowledge.
Annotation and ontology definition files used in this
study were downloaded from: http://www.geneontology.
org/GO.downloads.database.shtml (03.16.2011). Given
the ontology structure and annotation information, a
variety of methods and information sources have been
proposed to quantitatively describe the relationships
between terms [23,24], often referred to as semantic dis-
tances. The distances were used to construct a weighted
graph of all terms provided by the GO. The GO graph
was then used to quantify the distance for any two
genes. Edges were not drawn when the following evi-
dence codes were used: Inferred from Electronic Anno-
tation (IEA), Inferred from Sequence or Structural
Similarity (ISS), Inferred from Sequence Orthology
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(ISO), Inferred from Sequence Alignment (ISA), Inferred
from Sequence Model (ISM), Inferred from Genomic
Context (IGC), and inferred from Reviewed Computa-
tional Analysis (RCA).

Lets consider the GO as the singular data source so
that a graph G = {V, E, w} may be defined such that all
gene vertices V are connected using a set of edges E.
The edges are then given weights w reflecting the
semantic distance. To quantify the relationships between
terms, a relative difference in information content (IC)
may be used [25-28] as a measure of semantic distance.
Adopting this principle, the IC of a GO term is calcu-
lated as follows:

IC(t) = —In P(t), )

where P(t) is the number of annotation instances for
the term divided by total number of instances from the
annotation database. We can then define the semantic
distance between a parent-child pair of GO terms as

dist (t, &) = [1C(tp) — 1C(t.) (2)

The goal of constructing a weighted graph represent-
ing the structure and semantic relationships of the GO
is to use this data structure to determine the functional
relatedness of genes, because a pairwise distance matrix
among the genes is needed for spectral clustering. For
each gene pair, all GO terms that were used to annotate
the two genes were considered, and functional distance
between the genes was may be determined as the dis-
tance of the shortest path between the genes in the GO
graph, using a bidirectional version of Dijkstra’s algo-
rithm [29] as implemented using NetworkX [30]. Using
the information integration techniques discussed below,
the three aspects of the GO: biological process, molecu-
lar function and cellular component were combined.
The distances between genes tend to be smaller for cel-
lular component than for the other aspects (see Supple-
mental Results in the Additional File 1). However, by
using all three aspects simultaneously a single very small
distance will have less of an affect on overall gene-gene
distance than three reasonably small distances.

Gene co-mentioning: an information source of relatedness
among genes

When a pair of genes is co-mentioned in the biomedical
literature, they are often related to each other somehow:
they may be participating in the same biological pro-
cesses co-operatively or, alternatively, they may counter-
act each other. The reasons for the co-mentioning are
many; nonetheless, a biomedical document seldom men-
tions genes that are totally irrelevant, although certain
exceptions exist. To populate a pairwise distance matrix
of all genes using co-mentioning data, a current file
containing a mapping between genes and biomedical
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literature was downloaded from NCBI FTP site ftp://ftp.
ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz. Using
these data, the distance between two genes was calcu-
lated as the maximum number of shared publications
minus the observed number of shared publications.

Spectral clustering for gene list partitioning

Spectral clustering aims to divide a set of data points
into highly related subsets. Unlike conventional cluster-
ing methods such as K-means clustering, spectral clus-
tering groups data points based on their ‘relatedness’
rather than their geometric closeness. As a result, a set
of data points can be partitioned into a cluster based on
a chain of strong pairwise connections even though the
points are geometrically remote. Thus, the method is
particularly well-suited for capturing the relationships
between gene subsets by taking into account their relat-
edness across different biological aspects, for example,
gene products that are linearly connected in a metabolic
pathway.

Given a list of genes, pairwise relationships were used
to construct a distance matrix that was subsequently
used as input into the version of spectral clustering pro-
posed by Ng and colleagues [12]. The first step of the
algorithm is to transform the distance matrix into an
affinity matrix using a kernel. In this context, the kernel
functions to provide a means by which the pairwise rela-
tionships between genes are modulated; an essential
ability when combining data that vary in distribution,
shape and range. Affinities were calculated using the
Gaussian kernel function:

—(ld112
A,-,-=exp< !O”z” ) 3

where ||d;|| is a measure of distance between objects i
and j and o is the bandwidth parameter. In related
works, o was automatically scanned for by minimizing a
quantity referred to as distortion [12,31], an objective
function that assesses the quality of the clustering.
Empirically, we have found that searching for o based
on distortion tends towards increasing recall at the
expense of precision; therefore we opted to search for
an optimal o by maximizing the mean silhouette value
[32] instead. A silhouette value measures how similar to
each other the data points in a cluster are, relative to
the points outside the cluster, and thus reflects the
coherence of a cluster. The values of o used in this
study are reported in Supplemental Table 1 in the Addi-
tional File 1. The parameters were estimated by mixing
groups of known functionally coherent groups, scanning
intervals of possible values, calculating precision and
recall, and finally by visually inspecting both the affinity
values as well as the plotted results.
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Here, we formalize the algorithm steps described so
far, and describe the remaining parts. Given a set of
genes g = {g1, ..., gn}, a distance matrix is first con-
structed, which is further transformed into an affinity
matrix A in which an element, a;, is determined by Eqn
3. Next, a diagonal matrix D is then created such that
the (i, i)-element is the sum of A’s i-th row. With these
data, the Laplacian matrix L may then be computed.

L=D'2AD /2 (4)

Next, we find x, ..., x5, which are the k eigenvectors
associated with the k largest eigenvalues of L, and form
the matrix X = [xy, ..., x,] by stacking the eigenvectors
horizontally. Then, a normalized matrix Y is found by
transforming each of the rows in X to have unit length.
For example,

x,j

(54)" ©

Treating each row in Y as a point, the points are then
clustered into k subsets using the K-means clustering
algorithm. Finally, the original point g; is assigned to
cluster j if row i of the matrix Y was assigned to cluster
j. We note that L is not actually the Laplacian (I - L) as
traditionally thought of from graph theory, though we
keep with the terminology of Ng et al. [12]. To carry
out the clustering and related tasks, an installable
Python package was developed and made publicly avail-
able through a mercurial repository http://code.google.
com/p/spectralmix.

Vi =

Integrating heterogeneous data

One of the major goals, given a gene set of interest, is to
integrate the information from distinct information
sources, such that one can take advantage of comple-
mentary information to reveal the connections among
genes that would be missed when an individual informa-
tion source is used. Within the framework of spectral
clustering, information integration can be performed at
different stages: 1) create a pairwise distance matrix by
combining all information sources, 2) after kernel trans-
formation, combine the similarity matrices derived from
different information sources in the kernel space. Inte-
gration at the distance stage is inherently difficult,
because of differences in location, scale, and distribution
types of distinct sources. The second approach is also
referred to as a kernel fusion approach [33], which is
not only a logical approach to integrate data, but is also
shown to be effective. A major advantage of this
approach is that it is principled, that is the same
approach is taken each time, thus avoiding the issue of
technique manipulation for newly encountered
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information sources. In this study, we performed kernel
transformations of distance matrices from each informa-
tion source into corresponding affinity matrices, which
were scaled using an information-source-specific o.
Then, affinity matrices were element-wise summed to
produce a unified affinity matrix.

Identifying coherent gene subsets

Just because we have a set of genes partitioned into
groups does not necessarily mean that the resulting
clusters will represent coherent gene subsets; for this
there are three challenges that must be overcome. The
first is that of noise: experimental results commonly
contain noise and as a result any method that clusters
genes must be shown to be reasonably resilient to ran-
dom noise. The second is determining the optimal num-
ber of subsets; and the final challenge is to assess
whether a subset is functionally coherent or not. To
judge the quality of a given clustering, the average sil-
houette value for a cluster may be used, where values <
0 are considered poorly clustered. This heuristic is use-
ful for filtering or ranking, however it does not tell us
much about method performance in the face of noise.
In order to determine the extent to which noise plays a
role a more rigorous set of simulations was run, where
known positive control data sets were combined with
varying quantities of inserted noise.

In order to determine the suitable number of clusters
to partition data another modification was made. Given
data X that have been kernel transformed and cast into
eigen-decomposition space as Y, we consider the first
two eigenvectors. Originally, Y may be partitioned in
this space using K-means or another clustering algo-
rithm, however we may repartition the data by scanning
over a range of k (3-8) settling on the value that maxi-
mizes the average silhouette index [32]. Because k is
normally unknown, the search for an optimal number of
clusters is necessary component of the algorithm.

The resulting k subsets were then analyzed for func-
tional coherence [18]. The method described therein,
also called GOSteiner, is based solely on the Gene
Ontology and uses a graph-theoretic method to deter-
mine statistical significance, in terms of functional
coherence, of an arbitrary gene set. Given the current
state of functional annotation completeness for the GO,
it is expected that there are some number of function-
ally interesting clusters that will be missed, however the
number of false positives is expected to be very low
with GOSteiner.

Simulation and evaluation

The simulations experiments provide a controlled envir-
onment to serve as a common means, by which compar-
isons can be made over a variety of experimental


http://code.google.com/p/spectralmix
http://code.google.com/p/spectralmix

Richards et al. BVIC Systems Biology 2012, 6(Suppl 3):S7
http://www.biomedcentral.com/1752-0509/6/S3/57

conditions including: the impact of different approaches
for populating and calculating distance matrices, the
effect of combinations of different data types, and the
impact of noise on clustering. In this study a varying
number (k) of functionally coherent gene sets were ran-
domly selected, mixed, and combined to form a single
gene set. The functionally coherent sets come from the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [14] and the Molecular INTeraction (MINT)
database [15]. The clustering algorithm was then applied
to partition the genes. For each iteration of the simula-
tion to a newly created gene set, it is necessary to evalu-
ate the clustering assignments. We used an evaluation
method that counts pairs of similar and non-similarly
labeled genes in the same way the Rand index [34] is
calculated. This evaluation method allows the calcula-
tion of both precision and recall and a summarizing F;
score (see Supplemental Methods in the Additional File
1). It is important to note that precision and recall as
traditionally thought of in information retrieval is differ-
ent from this setting, because we are considering pair-
wise relationships instead of the genes themselves.
Simulations were run 20 times for each k, in order to
carry out performance comparisons under different con-
ditions; for example, to compare the use of different
information sources. With the simulations run, the data
were grouped based on the simulation condition and
performance metric. In order to statistically compare
these groups, normally an ANOVA would be used.
However, ANOVA with repeated measures could not be
used to compare the groups or blocks (e.g. GO, Pubs,
GO-Pubs), because the assumptions of equal variance
and normality were violated. To check the model
assumptions, the Shapiro-Wilk’s test [35] for normality
and Barlett’s test for homogeneity of variances were
used. The non-parametric alternative, Friedman’s
method for randomized blocks was used to first deter-
mine if there was a difference among the groups, then
in the cases where a null hypothesis of no difference
was rejected, a post hoc analysis was subsequently used.
All tests were carried out using the statistical language
R [36] and an implementation of the post hoc test was
written in R and based on the coin package [37].

Application to gene-expression data

To illustrate the utility of our proposed method, we
applied the algorithm to time-series microarray data
[13]. The K-means clustering algorithm [38] was used
and all clusters that contained one or more genes anno-
tated with a GO term pertaining to ‘mitochondria’ were
used to create a gene set of interest from the original
probes. In all, the gene set of interest contained 458
genes. Next, spectral clustering was run on the gene set
using GO, publications, gene expression, and all possible
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combinations of the individual sources. For the gene
expression data the correlation coefficient was used as a
distance metric. The purpose of the experiment was to
determine if our approach is capable of identifying
coherent subsets among these genes by different combi-
nations of information data sources as a means to reveal
new biological information. In addition, we were inter-
ested in the relative performance of each information
source k so in order to ensure an unbiased comparison
k was set to 10 for each information source used. The
performance of the information sources is compared
using a weighted mean of the p-values (see Figure 5).
After each partitioning of the genes into putative mod-
ules each cluster was assessed for functional coherence
using the GOSteiner method [18].

Additional material

Additional file 1: A PDF file contains supplementary methods and
results.
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