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Abstract

Background: Genome-scale metabolic networks and flux models are an effective platform for linking an organism
genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential
metabolic engineering strategies in silico.

Results: A new method called “flux balance analysis with flux ratios (FBrAtio)” was developed in this research and
applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iICAC490) that contains 707
metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered
strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were
required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio
constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the
production of: (i) acetate, (i) lactate, (iii) butyrate, (iv) acetone, (v) butanol, (vi) ethanol, (vii) CO, and (viii) H,. Results
of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-
CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/
alcohol dehydrogenase greatly increases ethanol production.

Conclusions: FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios.
The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.
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Background

Modeling clostridial metabolism

Butanol is of considerable research interest as a potential
biofuel, and its renewable production through fermenta-
tion is sought largely from the clostridia. In particular,
Clostridium acetobutylicurn ATCC 824 has been one of
multiple clostridia researched for butanol production over
the past few decades. In fact, the first applications of meta-
bolic flux balancing were performed using a model of C.
acetobutylicum primary metabolism to understand what
caused this organism to produce butanol and the compet-
ing metabolic byproducts: (i) acetate, (ii) butyrate, (iii) lac-
tate, (iv) acetone, (v) ethanol, and several others in small
amounts [1,2]. Flux modeling of the primary metabolism
of C. acetobutylicum has led to a better understanding of
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the role cofactor balancing plays in directing global meta-
bolic changes. It has played a significant role in metabolic
engineering by identifying bottlenecks and critical flux dis-
tributions at metabolic branch points [3-8]. Multiple
“genome-scale” metabolic network reconstructions now
exist for C. acetobutylicum [9-12]. Similar networks and
their corresponding genome-scale models have been
reviewed extensively [10,13-20]. In general, they are used
to (i) complete genome annotation [21], (ii) predict opti-
mal culturing conditions [22-24], (iii) discover genomic
regulation [20,25,26], (iv) identify essential genes and drug
targets [27-33], (v) study strain evolution [34,35], and (vi)
design productive strains [36-38]. Modeling results on the
genome-scale have been applied to both “acidogenic” and
“solventogenic” programs of clostridial metabolism [9].
The acidogenic program is characterized by high acids (i.
e., acetate and butyrate) production and high growth rates,
and the solventogenic program (i.e., acetone and butanol
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production) largely coincides with the stationary growth
phase of the culture. During solventogenesis, acetate and
butyrate are re-consumed by the culture and converted to
acetone and butanol. The genetic program of this meta-
bolic shift between acids and solvents production has been
studied in detail [39]. Several insights into C. acetobutyli-
cum metabolism have been gained from “gap filling” the
metabolic network by locating previously unknown
enzymes and biochemical reactions [11,12]. The total rate
at which a cell produces/consumes protons through the
several membrane transport mechanisms is termed the
specific proton flux (SPF), and this parameter has shown
to significantly reduce the total number of flux “solutions”
available for the under-determined genome-scale model of
C. acetobutylicum [12]. Reducing the number of degrees
of freedom of these genome-scale models through applica-
tion of genetic regulation and physicochemical constraints
has been recognized as a key strategy for generating meta-
bolic flux predictions that coincide with experimental
observations [20].

Engineering clostridial metabolism

Knowledge of the metabolic pathways of butanol fermen-
tation has allowed for targeted engineering approaches. As
acids (acetate and butyrate) and alcohols (ethanol and bu-
tanol) are competing products of fermentation, metabolic
engineering strategies have been designed to silence acid
producing pathways in attempt to re-direct carbon flow
into the alcohol producing pathways. The primary meta-
bolic network of C. acetobutylicum is shown in Figure 1
(adapted from [6,8]). An example of this strategy is the
knockdown of the butyrate kinase (buk) (BK in Figure 1)
and phosphotransacetylase (pta) (PTA in Figure 1) genes
in clostridial metabolism [40]. The proximity of the pta
gene in the genome to the acetate kinase (ak) (AK in Fig-
ure 1) gene resulted in the silencing of both genes simul-
taneously, further decreasing acetate production. The
results of this engineering strategy showed that eliminating
genes of the acetate pathway had little effect compared to
the wild-type, while knockdown of butyrate pathway genes
resulted in 10% more butanol and 50% less acetone than
the wild-type [41]. The aldehyde/alcohol dehydrogenase
gene (aad or adhEl) (AAD in Figure 1) was over-
expressed in the presence of a buk knockout, and this
strain yielded a 300% increase in butanol production and
400% increase in ethanol production over the wild-type
strain [42]. In a separate metabolic engineering strategy,
the aad was over-expressed while knocking-down the
gene for subunit B of acetoacetyl-CoA transferase (ctfB)
(CoAT in Figure 1). This led to a strain with similar buta-
nol productivity but the ability to produce extraordinary
ethanol concentrations of 200 mM (23-fold higher than
the wild-type) [43]. However, when the aad gene was put
under control of the pth gene promoter (to increase
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expression during the early acidogenic phase of the cul-
ture) an increase in butanol concentrations to 300 mM (a
record high) was observed along with faster accumulation
of butanol in the culture [44].

Metabolic engineering in silico

The goal of metabolic engineering in silico is to derive (or
at least evaluate) potential metabolic engineering strategies
prior to constructing them in the laboratory. For example,
will a particular gene over-expression or knockout in C.
acetobutylicum increase butanol production? Answering
questions of this type is one of the potential uses of
genome-scale modeling. However, with the initial genome-
scale model for C. acetobutylicum [11,12], these questions
could not be addressed without constraints on acid/solv-
ent production. These constraints artificially specified
ranges for secretion rates of acid and solvent products.
These were necessary due to the large number of degrees
of freedom that exist in the under-determined genome-
scale model and the high degree of branching in the pri-
mary metabolism of clostridia. Simply, too many flux solu-
tions were available if the user was only to define the
substrate uptake rate and a proper objective function. The
production of products/byproducts by a metabolic net-
work not only completes elemental balances but it also
regenerates and balances cofactors. In clostridial metabol-
ism, ATP is regenerated by the production of acetate or
butyrate, and NAD" is produced by the production of (i)
lactate, (ii) ethanol, or (iii) butanol. With several options to
balance cofactors available, information about enzyme spe-
cificity is necessary to achieve reasonable selectivity. If
constraints in a genome-scale model are simply placed
around secretion of a product or byproduct, the model
does not represent the cellular mechanisms that result in
proper selection. Thus, an effective metabolic engineering
strategy cannot be formulated in silico given these types of
constraints.

With the ultimate goal of re-directing metabolic flux
through the butanol production pathway in C. acetobuty-
licum, few tools, with the notable exception of OptKnock
[36], exist for deriving a metabolic engineering strategy.
Even with its many successes, OptKnock is restricted to
gene knockouts and cannot suggest over-expression and
partial gene knockdown strategies to engineer metabol-
ism. However, the recently published OptForce algorithm
[38] provides the capability to identify both gene over-
expressions and knockdowns required of a metabolic
network to produce a targeted amount of a specified
product. Ultimately, methods that target the regulatory
network of the cell and re-direct metabolic flux at net-
work branch points will enable even more effective
metabolic engineering in silico. The research presented
here is a first step to constraining metabolic branching
based on enzyme specificity. This approach also enables
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Figure 1 Primary central carbon metabolism of C. acetobutylicum. Cofactors consumed by each reaction are listed as (—) and cofactors
produced (+) (H" ions are not shown). The following enzymes are shown in bold: (LDH) lactate dehydrogenase, (PFO) pyruvate ferredoxin
oxidoreductase, (FNO) ferredoxin NAD" oxidoreductase, (FNPO) ferredoxin NADP* oxidoreductase, (HYDA) hydrogenase, (AAD) acetaldehyde/
alcohol dehydrogenase, (PTA) phosphotransacetylase, (AK) acetate kinase, (THL) thiolase, (COAT) acetoacetyl-CoA transferase (for acetate and
butyrate), (AADC) acetoacetate decarboxylase, (BHBD) 3-hydroxybutyryl-CoA dehydrogenase, (CRO) crotonase, (BCD) butyryl-CoA dehydrogenase,
(PTB) phosphotransbutyrylase, (BK) butyrate kinase, (BDHA) butanol dehydrogenase A, and (BDHB) butanol dehydrogenase B. The CoAT can
function with either acetate or butyrate substrate; it does not require both. The AAD can catalyze three reactions in the model. These are listed as
(i) AAD_1, (i) AAD_2, and (i) AAD_3.

simulation of gene over-expressions and partial gene
knockdowns in addition to gene knockouts.

Considering metabolic flux ratios

The experimental determination of metabolic flux and
pathway usage through the use of isotope tracers has sig-
nificantly contributed to the overall understanding of

regulated metabolism. One approach to characterize me-
tabolism is through the use of metabolic flux ratio ana-
lysis (METAFoR) [45-47]. This method is used to
determine the degree of converging pathway usage to
produce a metabolite pool when multiple synthesis
routes exist. For example, METAFoR can reveal the rela-
tive contributions of anaplerosis and the TCA cycle to
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the formation of the oxaloacetate pool. Early results
revealed the robustness of central carbon metabolism of
Escherichia coli [45/47] as many calculated flux ratios
were found impervious to genetic perturbations. Add-
itional computational method development led to the
formulation of constraints for flux balancing from mea-
sured flux ratios [48,49]. The resulting algorithm was ef-
fective given small metabolic networks of primary
metabolism and the use of nonlinear programming
methods. Unfortunately, these aspects have limited the
applicability to large genome-scale metabolic networks,
which often must rely on linear programming.

Genome-scale modeling with flux ratios

Of the several successful (and unsuccessful) metabolic en-
gineering strategies applied to clostridia (many of which
are not mentioned here), it was not immediately apparent
which design(s) would be successful upon conception. The
mutant strains had to be created in the laboratory and ana-
lyzed. From these results, hypotheses were formed that
guided more advanced designs. The purpose of metabolic
engineering in silico is to analyze and optimize engineering
strategies a priori so that only the most promising candi-
dates are constructed in the laboratory. While genome-
scale modeling has provided the necessary platform for
metabolic engineering in silico, the large number of
degrees of freedom of these models has been limiting.
Here, a new approach called “flux balance analysis with
flux ratios (FBrAtio)” is developed and applied. One signifi-
cant advantage of FBrAtio is that flux ratio constraints are
built into the stoichiometric matrix directly. This approach
allows for multiple flux ratio constraints to be included
simultaneously, and the flux balancing problem can be
solved using simple linear programming. In particular,
FBrAtio is used to show that the butanol to acetone pro-
duction ratio of C. acetobutylicum increases in the pres-
ence of CoAT knockdown by antisense RNA (asRNA).
This metabolic engineering strategy is also simulated in the
presence of AAD knockdown and over-expression to show
this method can predict these published outcomes [43,50].

Methods

Genome-scale model

A new genome-scale model for C. acetobutylicurn ATCC
824 was constructed by expanding the previously pub-
lished model by Senger and Papoutsakis [11,12]. The new
model is called i{CAC490 and contains 707 metabolites
involved in 794 biochemical reactions, including 66 mem-
brane transport reactions. The model includes 490 genes
from the C. acetobutylicum genome. The newly updated
iCAC490 model differs from the original Senger and
Papoutsakis model [11,12] in that it contains 242 more
reactions (a 44% increase) and 285 more metabolites (a
68% increase). The new reactions added to create the
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iCAC794 model were obtained from the KEGG database
[51] and recent literature. The iCAC490 model also con-
tains an updated TCA cycle that operates in both oxidative
and reductive directions to succinate, as shown by recent
fluxomics studies [52,53]. The model allows the export of
succinate since its metabolic fate has not yet been resolved
conclusively. The iCAC490 model is also fully compart-
mentalized and allows the presence of chemical reactions
in the extracellular environment. Thermodynamic reaction
reversibility constraints based on Gibb’s free energy calcu-
lations from the group contribution method [54,55] have
also been applied. The biomass equation was also updated
for the iCAC490 model, using the initial version by Senger
and Papoutsakis [11,12] as a template. A nonlinear
optimization procedure was applied (manuscript in prep-
aration) to optimize the biomass equation given specific
environmental conditions. The biomass equation derived
for exponential growth was used extensively in simulation
studies reported here. It was found that the exponential
growth biomass equation could result in qualitatively ac-
curate model predictions. It is acknowledged that an
updated and dynamic biomass equation will be required to
obtain model predictions that are quantitatively accurate.
The reconstructed metabolic network of the iCAC490
model is included as Additional file 1. The SBML format-
ted model is included as Additional file 2.

Flux balance analysis

The iCAC490 genome-scale model was simulated using
flux balance analysis through the COBRA toolbox [56].
The open-source GLPK linear programming software
was used to solve the flux balance equation (S - v = 0),
where S is a stoichiometric coefficient matrix and v is a
vector of flux values. Methods related to construction of
the stoichiometric matrix and the required steady-state
approximation for intracellular metabolite concentra-
tions have been detailed elsewhere [57]. The objective
functions used for all simulations were (i) maximizing
the specific growth rate of the cell while (ii) minimizing
the total flux of the system.

The specific proton flux

The concept of the specific proton flux (SPF) was first
introduced by Senger and Papoutsakis [12] and describes
the total rate of proton influx/efflux through all membrane
transport mechanisms. This value is negative when pro-
tons are leaving the cell and positive when protons are
taken-up by the cell. For the case of C. acetobutylicum, the
SPF is highly negative during exponential growth (acido-
genesis) and turns slightly positive during the stationary
phase (solventogenesis). In this research, the SPF was con-
strained to specific values by constraining the proton ex-
change reaction (the total flux of protons in/out of the
systems boundary). The SPF range was between -30
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the limits were chosen from experimental observations.

(proton efflux) and 5 (proton influx), and

FBrAtio algorithm

Metabolic engineering in silico was enabled through the
application of flux ratio constraints. In the FBrAtio
method developed in this research, flux ratio constraints
were incorporated into the stoichiometric matrix dir-
ectly, enabling the flux balancing problem to be solved
by simple linear programming. Several flux ratios were
investigated, and a critical metabolic branch point was
identified around the use of the acetyl-CoA metabolite
pool. In clostridial metabolism, acetyl-CoA can be used
to produce multiple acids, solvents, or macromolecules
to produce biomass. The routes taken by acetyl-CoA ei-
ther regenerate or consume different amounts of ATP
and NAD(P)*. Ultimately, the balancing of these cofac-
tors determines the production of acids and solvents.
The large number of degrees of freedom associated with
the genome-scale model of clostridial metabolism allows
a large number of acid/solvent production combinations
that satisfy cofactor balancing and the overall mass bal-
ance, while satisfying the objective functions of the
optimization. Thus, flux ratios ultimately reduce the
number of degrees of freedom of the system and can be
used to define selectivity. The following example demon-
strates the application of a flux ratio related to the con-
sumption of acetyl-CoA and the incorporation of this
flux ratio into the stoichiometric matrix. As shown in
Figure 1, two possibilities for acetyl-CoA are (i) usage by
the thiolase enzyme (THL) for conversion to acetoacetyl-
CoA and (ii) usage by the phosphotransacetylase enzyme
(PTA) for conversion to acetyl phosphate. The reactions
catalyzed by these enzymes are given Equations. 1 and 2.

2acetyl-CoA i acetoacetyl-CoA + CoA (1)

acetyl-CoA + orthophosphatelﬂqacetyl — phophate + CoA
(2)

Next, a ratio of fluxes for these reactions is assumed.
For this hypothetical example, it is assumed that twice as
much flux proceeds through the THL reaction (Equa-
tion 1) than the PTA reaction (Equation 2). Ultimately,
biochemical origins of differing fluxes through compet-
ing reactions, where known, can be used to calculate flux
ratios. The flux through the reaction catalyzed by THL is
ArTHL) and the flux through the PTA catalyzed reaction
is firPTA). This flux ratio is called ArTHL):rPTA) and is
represented as Equation 3.

. _ f(rTHL)
SOTHL) : f(PTA) =7 s =2 (3)
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To build this flux ratio constraint into the stoichiometric
matrix (S), first Equation 3 is rearranged to the following.

F(rTHL) — 2f (rPTA) = 0 (4)

Next, a new row is added to the stoichiometric matrix.
In this new row, two values are added (all other values in
the row are zero). In the column representing the reac-
tion catalyzed by THL (Equation 1), the coefficient 1 is
added to the matrix. In the column representing the re-
action catalyzed by the PTA, the coefficient -2 is added
(in the new row). With these additions, when the flux
balance equation (S - v = 0) is solved, the ratio of fluxes
for the reactions of Equation 1 and Equation 2 will be
exactly 2. If the flux ratio chosen leads to an impossible
solution of the metabolic network, no solution will be
found to the flux balance equation.

Simulations performed

The goal of this research was to develop a method of con-
straining a metabolic network so that metabolic engineer-
ing can be performed in silico. Until now, gene knockouts
have been the dominant strategy for designing metabolic
engineering strategies in silico. However, flux ratios offer
the ability to include over-expression and flux re-direction
at key branch points in a metabolic network. These results
can offer a snapshot of the metabolic potential of the engi-
neered cell and offer the metabolic engineer an experi-
mental target to achieve these results. Simulations
performed in this research focus on using FBrAtio to re-
produce metabolic engineering strategies that have been
experimentally validated in C. acetobutylicum [6,43,50]. In
particular, simulations were performed with the iCAC490
model in which the glucose uptake rate and the SPF were
the only specified membrane transport fluxes. Next, FBrA-
tio was applied to achieve the experimentally observed
wild-type metabolic activity of C. acetobutylicum. The fol-
lowing metabolic characteristics were sought on a qualita-
tive level: (i) at highly negative values of SPF
(acidogenesis), acetate and butyrate are produced in high
quantities, (ii) high hydrogen production accompanies
acidogenesis, (iii) solvents are produced at SPF values close
to zero and slightly positive, (iv) hydrogen production
decreases during solventogenesis, (v) the maximum
growth rate of the culture occurs during acidogenesis, (vi)
the production of butyrate is slightly greater than the pro-
duction of acetate and much greater than the production
of lactate, and (vii) the production of butanol is greater
than the production of acetone and is much greater than
the production of ethanol. Following obtaining a qualita-
tively accurate simulation of wild-type metabolism, add-
itional flux ratios were applied through FBrAtio in attempt
to predict the following experimental observations [43,50].
Knockdown of the CoAT (by asRNA) resulted in increased
butanol to acetone selectivity, but this strategy resulted in
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decreased ethanol and butanol production [50]. The asRNA
was designed against the mRNA of the cftB gene in particu-
lar, which is a part of the tricistronic operon (aad-ctfA-ctfB).
It was hypothesized that AAD activity was also compro-
mised by this asRNA construct, so aad was over-expressed
under its native promoter. Significantly higher ethanol and
butanol yields were observed as a result of this metabolic
engineering strategy [43]. Flux ratios were designed to (i)
knockdown CoAT activity only, (ii) knockdown activity of
both CoAT and AAD, and (iii) knockdown CoAT while
over-expressing AAD at and above wild-type levels.

Results
Simulations with a minimal set of constraints
The iCAC490 model was simulated with a glucose uptake

hrZB"SIw and the SPF was varied be-

tween -30 and 5 %’ggé’v; Only thermodynamic reversibility

constraints were used initially. Results showed acidogenic
and solventogenic metabolic phases that coincided with
SPF values [12]. Results also showed a maximum specific

growth rate at an SPF value of ~10 Z;’Zgg;,,

ent with previous findings [2,12]. However, during acido-
genesis, acetate was the primary acid produced, and acetone
was the primary solvent produced during solventogenesis.
Hydrogen (H,) production was also maximized during sol-
ventogenesis. These characteristics are not consistent with
experimental observations. Since only acetate was produced
in acidogenesis, this demonstrates that the network required
the generation of ATP. Since butyrate or ethanol was not
produced, this means that NAD" was regenerated in a futile
cycle elsewhere in the network. The ability of the network
to artificially balance NAD(P)"/NAD(P)H also explains why
hydrogen production remained high during solventogenesis.
By maximizing the specific growth rate of the cell and min-
imizing the total flux of the system, flux in longer pathways,
such as butyrate/butanol production were minimized in
favor of shorter ATP (acetate) and NAD™ (futile cycle) re-
generating pathways.

rate constrained to 10

which is consist-

Approximating wild-type metabolism with FBrAtio
Obvious futile cycles allowing artificial NAD(P)*/NAD(P)H
balancing were located and corrected, but the problems
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described above remained. Given the ability of the meta-
bolic network to artificially balance NAD(P)*/NAD(P)H
without using the acid/solvent production pathways,
additional constraints and flux ratio constraints were
implemented. First, the reactions involving the ferredoxins
were further constrained for irreversibility. These reactions
and their updated constraints are given in Table 1. Simula-
tion of metabolism, given these and glucose uptake and
SPF constraints are shown in Figure 2. In this simulation,
the following results do not coincide with experimental
observations: (i) succinate was produced in high levels dur-
ing acidogenesis, (ii) the production of acetate and lactate
far exceed butyrate production, (iii) only butyrate was re-
consumed (negative flux values), (iv) the amount of butyr-
ate re-consumed exceeded the amount of butyrate pro-
duced, (v) butanol was produced well before acetone, and
(vi) hydrogen (H,) production fell to zero and rose during
solventogenesis. These results show that during early pro-
duction of butanol (before production of acetone), butyrate
was consumed through the production pathway. This is
consistent with previous findings [7,58], and the thermo-
dynamic reversibility calculations [54] insist the reactions
catalyzed by the butyrate kinase (BK) and the phospho-
transbutyrylase (PTB) (see Figure 1) remain reversible.

A total of five flux ratio constraints were found neces-
sary to generate simulations of metabolism that were
qualitatively consistent with experimental observations.
First, the butyrate to acetate uptake ratio was con-
strained according to previously published findings [8].
The assumption was made that the extracellular butyrate
concentration was twice that of the extracellular acetate
concentration. From the original relationship [8], this
meant that the flux of butyrate uptake through the
CoAT, firCoAT, butyrate), to acetate uptake, flrCoAT,
acetate), was equal to 0.63, as shown in Equation 5. This
flux ratio is referred to as firCoAT, butyrate):f(rCoAT,
acetate).

f(rCoAT , butyrate) : f(rCoAT, acetate)
f(CoAT, butyrate)
- =063 (5
f(CoAT , acetate) (5)

Implementing this flux ratio alone led to high initial pro-
duction of succinate, and hydrogen production increased

Table 1 Reactions and updated constraints involving the ferredoxins

Enzyme Name Reaction

Lower Bound Upper Bound

PFO: pyruvate ferredoxin
oxidoreductase

HYDA: hydrogenase

FNO: ferredoxin NAD*
oxidoreducatase

CoA + pyruvate + Fdoy —

2 HT + Fdgeq — H + Fdoy
NADT + HY + Fdgeq —

NADH + Fdox
FNPO: ferredoxin NADP* NADPT + H™ + Fdgeq —
oxidoreductase NADPH + Fdgy

CO;, + acetyl-CoA + H* + Fdred

0 1000
0 1000
0 1000
0 1000

*The reduced ferredoxin (Fdgeq) and the oxidized ferredoxin (Fdo,).
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Figure 2 FBA results of wild-type metabolism using iCAC490. The model was simulated given (i) a glucose uptake rate of 10 21
SPF, and (iii) constraints listed in Table 1. These results do not coincide with experimental observation.
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during solventogenesis. Over-production of ethanol and
lactate was also observed. So, a flux ratio was installed to
direct the conversion of pyruvate to either lactate, through
the lactate dehydrogenase (LDH), or to acetyl-CoA
through the pyruvate ferredoxin oxidoreductase (PFO)
(see Table 1). This flux ratio is shown as Equation 6. This
ratio was set equal to 10 to coincide with published experi-
mental observations that lactate production is much less
than acetate and butyrate production [2].

f(rPFO) 10 (6)
f(rLDH)

Simulations with these two flux ratios were character-
ized by (i) high acetate and ethanol production, (ii) low bu-
tyrate and butanol production, (iii) high initial secretion of
succinate, and (iv) low initial production of hydrogen. The
secretion of succinate was investigated next. This is indica-
tive of high fluxes through the TCA cycle. No significant
succinate export has been reported for C. acetobutylicum,
so an optimized metabolic model must produce only min-
imal succinate (if any). In the i{CAC490 model, production
of oxaloacetate from pyruvate requires HCO3. When CO,
is produced, it is either (i) transported out of the cell or (ii)
converted to HCOj3. The fate of CO, is determined by
physicochemical properties of the intracellular environ-
ment and has a significant impact on intracellular metab-
olism. Thus, a ratio constraint for CO, export against
conversion was derived. This ratio is shown in Equation 7
and was set equal to 5 to approximate intracellular

conditions. This value was chosen because it led to effect-
ive simulations. The physicochemical nature of this flux
ratio constraint is currently under investigation.

f(CO;, export) )
f(CO, conversion)

This flux ratio constraint corrected hydrogen produc-
tion (i.e., high hydrogen production during acidogenesis
and reduced during solventogenesis) and minimized suc-
cinate secretion, which is consistent with experimental
observations. This constraint also resulted in increased
CO, production during solventogenesis, relative to pro-
duction during acidogenesis. However, metabolic activity
was still characterized by (i) high acetate and ethanol
production and (ii) low butyrate and butanol production
(results not shown). To address this, flux ratios were
constructed around the use of the acetyl-CoA metabolite
pool in clostridial metabolism (see Figure 1). Acetyl-CoA
can be utilized to (i) produce ATP through acetate pro-
duction, (ii) regenerate NAD" through ethanol produc-
tion, or (iii) balance both ATP and NAD" by producing
butyrate. However, the shorter metabolic pathways result
in acetate and ethanol production and accommodate
minimizing the total flux of the metabolic network. To
approximate wild-type clostridial metabolism, flux must
proceed from acetyl-CoA through the thiolase (THL)
with greater flux than through the phosphotransacetylase
(PTA) towards acetate or through the bifunctional alde-
hyde/alcohol dehydrogenase (AAD). To ensure this,
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additional flux ratio constraints were derived. The ratio
of metabolic flux through the THL relative to the PTA,
ArTHL):ArPTA), was set equal to 2, and the flux through
the THL relative to the AAD, ArTHL):frAAD_I), was set
equal to 10. This ensured the majority of acetyl-CoA was
sent to the butyrate producing pathway while a greater
amount of acetyl-CoA was converted to acetate than was
converted to ethanol. These flux ratios are shown in
Equations 8 and 9. Simulation results are shown in Fig-
ure 3. Due to the constant glucose uptake rate, solutions

to the flux balance equation were only possible for SPF

values greater than —-17 ,Z';’chfg, In a previous study [12],

much higher glucose uptake rates enabled flux solutions

mmol H
hr-gDCW *

tions shown in Figure 3, a roughly 1:1 production ratio
of Hy/CO, was observed during exponential growth, and
the production of H, decreased in solventogenesis, while
the production of CO, increased. This is consistent with
experimental observations [59]. Butyrate was produced
in greater amounts than acetate, and both acids were
taken up during solventogenesis. The production of bu-
tanol was greater than that of ethanol and was similar to
that of acetone. The production of lactate was minimal,
as was the secretion of succinate. The maximum specific
growth rate of the culture occurred towards the end of
acidogenesis but prior to solventogenesis onset. Thus,
when the flux ratio constraints of Equations 5-9 were
applied through FBrAtio, the iCAC490 genome-scale

at SPF values approaching -55 In the simula-
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model was able to capture the major properties of wild-
type metabolism. This was done for the first time with-
out constraining acids and solvents production rates dir-
ectly using constraints on transporters or exchange
fluxes.

F(FTHL)f (rPTA) :% _ (8)
f(FTHL):f (FAAD_1) = % — 10 )

asRNA knockdown of CoAT only

Previous research found that knockdown of the CoA
transferase using asRNA technology resulted in a more fa-
vorable butanol to acetone selectivity. Although, overall
reduced butanol yields were observed [50], possibly due to
simultaneous AAD knockdown. To determine if FBrAtio
can predict of these findings, a flux ratio constraint was
derived to simulate knockdown of the CoAT. It was
assumed this knockdown led to a decreased flux of acetate
and butyrate re-uptake. As shown in Figure 1, the CoAT
converts acetoacetyl-CoA to acetoacetate while transport-
ing acetate or butyrate into the cell and converting them
to acetyl-CoA or butyryl-CoA, respectively. Acetoacetyl-
CoA, on the other hand, can also be converted to f-
hydroxybutyryl-CoA by the [-hydroxybutyryl-CoA de-
hydrogenase (BHBD). So, a flux ratio constraint was

18 T

-
(]
T

-
>

- =
o N
T T

Production Rate [mmol gDCW " hr]
(=]

L

Growth (x10)
~———— Ethanol
Butanol
Acetone
Butyrate
Acetate
Lactate
Succinate
—— Hydrogen
— CO,

-15 -10 5

mmol

Results qualitatively fit wild-type metabolism.

SPF [mmol H* gDCW " hr' )
Figure 3 FBrAtio results of wild-type metabolism using iCAC490. The model was simulated model given (i) a glucose uptake rate of 10
FrgbCT (i) varied SPF, (iii) constraints listed in Table 1, (iv) unidirectional acetate and butyrate secretion by diffusion, and (v) f ('THL) f (rPTA) = 2,
(Vi) £ (rTHL): f (rAAD_1) = 10, (vii) f (CO, export): f (CO, conversion) = 5, (viii) f (rPFO): f (rLDH) = 10, (ix) f (rCoAT, butyrate):f (rCoAT, acetate) = 0.63.

o
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derived to specify the distribution of B-hydroxybutyryl-
CoA utilized by the CoAT and the BHBD. This flux ratio
is called flrCoAT): irBHBD), where the flux through the
CoAT includes fluxes for both acetate and butyrate re-
uptake. In the wild-type simulations shown in Figure 3,

}’l"eroDlé{‘;, the flux through the CoAT was
mmol

2.03 25w for acetate re-uptake and 1.28 T gbCT for bu-
mmol

tyrate re-uptake (total CoAT flux of 3.31 hr‘gDCW). The
wild-type flux through BHBD was 3.04 hr'%élw to yield a

wild-type firCoAT): firBHBD) flux ratio of 1.09. The flux
ratio is given in Equations 10. However, this flux ratio in
the wild-type was a function of the SPF, and this relation-
ship is shown in Figure 4. To simulate knockdown of the
CoAT, two separate approaches were attempted. The first
approach continued to treat this flux ratio as a function of
the SPF. The flux ratio was constrained to values of (i)
75%, (ii) 50%, and (iii) 25% of the wild-type value, as
shown in Figure 4. The second approach was to fix the
flux ratio to a specified value for all values of the SPF.
The flux ratios chosen were: (i) 1, (ii) 0.5, (iii) 0.1, and
(iv) 0.01.

given an SPF of 5
mmol

f(rCoAT)
———=1.09 10
f(rBHBD) (10)
FBrAtio results with the f{rCoAT):ArBHBD) flux ratios
of Figure 4 are shown in Figure 5. In particular, results of
acetone, butanol, and ethanol predictions are shown to
focus on the impact of CoAT asRNA knockdown on

solvent production. The SPF range shown is from —10 to
5 mmol H"

Consistent with published experimental results
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[43,50], simulated knockdown of the CoAT resulted in
an increased butanol to acetone ratio. Significantly lower
acetone production (~50% reduction) was predicted with
increased butanol production (~25% increase) when
CoAT activity was down-regulated by 75%. Significant
about these simulation results is that the impact of “fine-
tuning” an asRNA construct can be observed through
simulations using flux ratio constraints.

It was important to determine whether the f{rCoAT):f
(rBHBD) flux ratio must be represented as a function of
the SPF (Figure 4). In further simulations, this flux ratio
constraint was artificially set and held constant for all
values of the SPF. FBrAtio results are shown in Figure 6
for flux ratios of: (i) 1, (ii) 0.5, (iii) 0.1, and (iv) 0.01. Similar
trends were obtained. As the f{rCoAT): firBHBD) flux ratio
decreased, metabolic flux was forced through the BHBD
enzyme (rather than through CoAT), resulting in (i)
decreased acetate/butyrate re-uptake, (ii) decreased acet-
one production, and (iii) increased flux through the buta-
nol production pathway. The exaggerated flux ratio
simulations of Figure 6 (ratios of 0.1 and 0.01) show the
potential of effective asRNA or gene knockout of the
CoAT. However, even though CoAT knockdown simula-
tions resulted in predicted phenotypes with improved bu-
tanol to acetone selectivity, these phenotypes did not show
overall reduced ethanol and butanol production. This sug-
gests AAD knockdown may be required to impact alcohol
yields, which is discussed in the next section.

Knockdown of both CoAT and AAD
In published research [43,50], it was suspected that the
aad gene was knocked-down when the asRNA for cftB

hr-gDCW*
1.4 T T T T T T T T
12f g
Wild -type
1 -
25% Knock-
o 08 down
=
14
E]
fr 50% Knock-
0.6}
down
04r 75% Knock- |
down
0.2} g
0 L 1 1 1 1 1
-5 -4 3 2 -1 0 1 2 3 4 5
SPF [mmol H* gDewW ' hr']
Figure 4 The wild-type f(rCoAT):f(rBHBD) flux ratio. Knockdowns of the CoAT of (i) 25%, (i) 50%, and (iii) 75% are shown.
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Figure 5 FBrAtio predictions of solvent production using the iCAC490 model and ratios of Figure 4. The model was simulated given (i) a
glucose uptake rate of 1Oh,_gDCW, (ii) varied SPF, (iii) constraints listed in Table 1, (iv) unidirectional acetate and butyrate secretion by diffusion, (v) f
(FTHL): £ (rPTA) = 2, (vi) f (rTHL): f (rAAD_1) = 10, (vii) f (CO, export): f (CO, conversion) = 5, (viii) f (rPFO): f (rLDH) = 10, (ix) f (rCoAT, butrate): f (rCoAT,
acetate) = 0.63, and (x) f (rBHBD) flux ratios defined in Figure 4 as a function of the SPF. The following curves are shown: acetone (cyan), butanol

SPF [mmol H gDCwW ™ hr')

(CoAT) was applied. The resulting strain produced very
little ethanol or butanol. Since these two genes reside in
the same operon, this hypothesis is valid. The previous
results (Figures 5 and 6) showed that the butanol to acet-
one ratio was increased with CoAT knockdown. Simula-
tions of the knockdown of both CoAT and AAD to
defined levels using FBrAtio are shown in Figure 7. The
AAD was knocked-down by the use of two flux ratio
constraints. In these simulations, knockdown of AAD
must be accommodated at two metabolic branch points
(i) acetyl-CoA and (ii) butyryl-CoA (see Figure 1). To
simulate the AAD knockdown, the ratio of flux diverted
through AAD, relative to its other choices, was decreased
by 80%. This factor was chosen based on the published
effectiveness of the originally designed asRNA [50]. To
incorporate the knockdown into flux ratio constraints,
the ArTHL):firAAD_I) flux ratio constraint was increased
from a value of 10 to 50. To implement the flux ratio
constraint at butyryl-CoA, a new f{rPTB):ArAAD_2) flux
ratio constraint was created. In wild-type simulations
(see Figure 3), this flux ratio was unconstrained and had

mmol H"
hr-gDCW

(assumed value of 0.25

an average value of 0.52 at an SPF value of 0 and

0 at an SPF value of 5 ;{;’;g’g;

during solventogenesis). At highly negative values of the
SPF, this ratio becomes infinite (since no butanol is pro-
duced). The firPTB):firAAD_2) was constrained to 1.25
(80% knockdown over 0.25) over all values of the SPF.
The ArTHL).firAAD_1) flux ratio constraint was held
constant at 50 (also 80% knockdown). The CoAT was
knocked-down 80% by adjusting the f{irCoAT):ArBHBD)
flux ratio to 0.2 over all values of the SPF. Results for
solventogenesis (SPF=5) are shown in Figure 7. Initial
simulations revealed a large ethanol production that was
not consistent with experimental findings. A closer in-
spection of genome-wide metabolic fluxes revealed sev-
eral reactions were involved in futile cycles to produce
excess acetaldehyde. To correct this, a new flux ratio
constraint was created between AAD 1 and AAD_3 and
is shown in Equation 11. This new flux ratio constraint
was set to 1.2 since it is known that acetaldehyde is not
produced exclusively through AAD_1 (although the
exact ratio has not been measured). FBrAtio results given
the flrAAD_3):firAAD_I) flux ratio constraint yielded
significantly reduced ethanol production. Results with
80% knockdown of CoAT and AAD still showed signifi-
cant butanol production; however, this was significantly
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Figure 6 FBrAtio predictions of solvent production using the iCAC490 model and fixed ratios. The model was simulated given (i) a glucose
uptake rate of 10m_mg’5‘c’/w, (i) varied SPF, (iii) constraints listed in Table 1, (iv) unidirectional acetate and butyrate secretion by diffusion, (v) f (rTHL): f
(rPTA) = 2, (Vi) f (rTHL): f (rAAD_1) = 10, (vii) f (CO, export): f (CO, conversion) = 5, (viii) f (rPFO): f (rLDH) = 10, (ix) f (rCoAT, butrate): f (rCoAT, acetate)
= 0.63, and (x) constant f (rCoAT): f (rBHBD) flux ratios of 1, 0.5, 0.1, and 0.01. The following curves are shown: acetone (cyan), butanol (red), and
ethanol (green).

reduced (towards zero) as the percent knockdown was
increased.

f(rAAD3)

f(raaD1)

(11)

Over-express AAD and knockdown CoAT

The AAD was over-expressed using the firTHL):ArAAD_I)
and firPTB):irAAD_2) flux ratio constraints. In this case,
the frTHL):ArAAD_1I) flux ratio constraint was adjusted
from 10 (wild-type) to values of (i) 5, (ii) 2.5, and (iii)
0.3125 to simulate over-expression (over wild-type levels)
by (i) 100%, (ii) 200%, and (iii) 500% respectively. The
frPTB):AirAAD_2) flux ratio constraint was also adjusted
accordingly to simulate these levels of over-expression.
FBrAtio results of solventogenesis (SPF =5) are shown in
Figure 8. The over-expression of AAD under control of its
native promoter led to large increases in ethanol produc-
tion in experimental observations [43]. However, in this
simulation study, an increase in AAD expression of 500%
was required to see this dramatic increase. As AAD over-
expression reached 1000% (results not shown), ethanol

production was increased an additional 60% (relative to
the 500% AAD over-expression level). This result is pos-
sibly explained by the presence of multiple copies of the
plasmid present in the cell during the experimental trials.

Discussion

The large number of degrees of freedom in primary clos-
tridial metabolism makes this system challenging to
model. Initial efforts [1,7,8] relied on experimentally
measured data to fit a basic metabolic model and back-
calculate pathways fluxes. With the development of
genome-scale models, there was initial enthusiasm that
this approach would result in a model capable of predict-
ing the metabolic response of the organism to genetic
and environmental manipulations. However, this level of
prediction was not achieved by the first genome-scale
model for C. acetobutylicumn [11,12]. This original
genome-scale model was updated in this research with
additional reactions and thermodynamic constraints.
Even with a more complete model and updated con-
straints, the number of degrees of freedom of the pri-
mary metabolic network proved too large to generate
meaningful predictions, even of wild-type metabolism.
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This is evident from the results shown in Figure 2. To
build a truly predictive model, care must be taken when
determining how proper constraints are imposed. It is
important that these constraints not only lead to accur-
ate representations of metabolism but can be manipu-
lated to mimic genetic and environmental perturbations.
For example, a common method is to artificially con-
strain the glucose uptake rate (as was done in this re-
search). From there, constraints can be imposed on
product (e.g., acetate, butyrate, butanol, etc.) secretion
fluxes to mimic the wild-type metabolism. This approach
is detrimental to metabolic engineering. For example, if
constraints are placed on secretion of the end-products,
how do these constraints change when a genetic ma-
nipulation is made elsewhere in the metabolic network
(e.g., at the thiolase enzyme)? There is no clear mathem-
atical relationship between a secretion flux constraint
and the metabolic flux through an enzyme elsewhere in
the network. Thus, constraints that are imposed to
achieve accurate representations of metabolism must be
imposed at the metabolic engineering targets themselves.
However, this leads to the questions, what is a metabolic
engineering target? And, how can constraints be imposed
there? This research has focused on “branch points” (or
critical nodes) of the metabolic network as potential sites

of metabolic engineering. The use of acetyl-CoA in clos-
tridial metabolism is a good example of a metabolic
branch point. Acetyl-CoA can be used in the production
of (i) acetate, (ii) butyrate/butanol, (iii) ethanol, and (iv)
macromolecules required for cell growth. Each of these
routes produces/consumes different cofactors, and the
balancing of these cofactors ultimately determines the
cellular phenotype.

The use of metabolic flux ratio constraints through
FBrAtio enabled qualitatively accurate modeling of
acidogenic and solventogenic metabolism of C. acetobu-
tylicum using the new iCAC490 genome-scale model.
The use of flux ratios allows for constraints to be placed
directly at points where metabolic engineering strategies
can be applied. For example, flux ratios can be manipu-
lated to achieve a desired result (e.g., maximized butanol
production). Then, genetic manipulations such as (i)
over-expression, (i) knockout, and (iii) asRNA knock-
down can be applied to achieve the optimum ratios. In
this research, flux ratio constraints were implemented to
achieve a qualitative picture of metabolism that mimics
experimental observations. As a proof of concept, the
wild-type and two engineered strains analyzed were con-
sistent with published experimental results. The case of
AAD over-expression went a step further and exposed a
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mmol

(v) ArPFO)ArLDH) =

10, and (vi) irCoAT, butyrate)f(rCoAT, acetate) =

constant: () glucose uptake rate of 10" ol (i) constraints listed in Table 1, (iii) ArTHL):ArPTA) = 2, (iv) CO, export):(CO, conversion) =5,
0.63.

possible metabolic engineering limit to re-routing flux into
the alcohol production pathways. This suggests that the
approach of flux ratio constraints is tunable. The flux
values obtained here were not converted into concentra-
tions of metabolites and biomass and compared directly to
published values. The results obtained here are qualitative
(not quantitative) pictures of metabolism. There are sev-
eral reasons for this. First, a fixed glucose uptake rate of 10
hrfzg‘glw was used for all values of the SPF examined. Previ-
ous results [12] have shown that the glucose uptake rate
varies with the SPF. However, the relationship between the
glucose uptake rate and the SPF remains uncharacterized.
At best, a causal relationship can be established between
these two with the current level of knowledge. Next, a
single biomass equation was used for all values of the SPF
examined. Previous research has shown that the biomass
composition, including the maintenance ATP require-
ment, of C. acetobutylicum changes with the SPF [10,12].
To obtain quantitatively accurate predictions, one must
first understand the relationships that exist between glu-
cose uptake and biomass composition with the SPF. While
research is underway to uncover these relationships, the
use of parameters associated with exponential growth
seemed to be sufficient with the FBrAtio approach.

FBrAtio is a new method to derive metabolic engineer-
ing strategies to achieve optimum phenotypes. The con-
cept of using metabolic flux ratios was initially developed
with the METAFoR approach [45,47]. It enabled research-
ers to determine how multiple biosynthetic pathways
contributed to the production of a metabolite pool. This
enabled identification of new metabolic pathways and
regulatory mechanisms. Since the implementation of
FBrAtio accommodates the use of linear programming,
flux ratios found with METAFoR can now easily be ap-
plied to appropriate genome-scale models using the
techniques described in the Methods section (see Equa-
tions 1-4). The FBrAtio approach is different from
METAFoR in that it considers how a metabolite pool is
distributed as a substrate among competing enzymes.
Of course, this process is governed by thermodynamics.
This means that enzyme availability and intermediate
accumulation downstream (among other factors) are re-
sponsible for flux ratios in physical systems. The FBrA-
tio approach can lead a metabolic engineer to optimum
flux ratios, and enzyme availability can be manipulated
through gene (i) over-expression, (ii) knockout, or (iii)
partial knockdown. However, the FBrAtio approach can-
not predict the potential accumulation of downstream
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intermediates once flux is redirected. This remains a prob-
lem for the experimentalist that may be addressed through
additional gene over-expression or enzyme engineering.

The FBrAtio approach is presented in detail here and
is applied to model previously published metabolic en-
gineering approaches in C. acetobutylicum. Obviously,
the full potential of FBrAtio will be realized when it can
be used systematically. To do this, algorithms are needed
to identify critical nodes (metabolite pools) in the meta-
bolic network where flux ratios can be optimized to pro-
duce a desired phenotype. Research is currently
underway to address this challenging task. The end result
will provide the metabolic engineer with a list of flux
ratios that can be manipulated using existing toolsets.
Although additional complications may be encountered
in some cases due to unforeseen regulatory interactions,
the FBrAtio approach has the potential to provide effect-
ive “fine-tuned” metabolic engineering strategies.

Conclusions

The FBrAtio approach for -incorporating metabolic flux
ratio constraints into a genome-scale metabolic network
and generating solutions using simple linear program-
ming was developed in this research. The approach
proved effective in modeling wild-type metabolism of C.
acetobutylicum. FBrAtio was then applied to metabolic-
ally engineered strains, and a high ethanol producing
strain was effectively modeled. A nonlinear relationship
exists between the flux ratios at a critical node and the
resulting phenotype. FBrAtio is capable of capturing
these nonlinearities. How flux ratio constraints can be
used to design metabolic engineering strategies is cur-
rently a subject of much future research, and the devel-
opments presented here represent the first steps toward
truly predictive genome-scale models that can accurately
reflect the impacts of genetic and environmental
manipulations.
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