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Abstract

Background: Inference about regulatory networks from high-throughput genomics data is of great interest in
systems biology. We present a Bayesian approach to infer gene regulatory networks from time series expression
data by integrating various types of biological knowledge.

Results: We formulate network construction as a series of variable selection problems and use linear regression to
model the data. Our method summarizes additional data sources with an informative prior probability distribution
over candidate regression models. We extend the Bayesian model averaging (BMA) variable selection method to
select regulators in the regression framework. We summarize the external biological knowledge by an informative
prior probability distribution over the candidate regression models.

Conclusions: We demonstrate our method on simulated data and a set of time-series microarray experiments
measuring the effect of a drug perturbation on gene expression levels, and show that it outperforms leading
regression-based methods in the literature.

Keywords: Systems biology, Network inference, Data integration, Statistics, Time-series expression data,
Model uncertainty
Background
With recent advances in high-throughput biological data
collection, reverse engineering of regulatory networks
from large-scale genomics data has become a problem
of broad interest to biologists. The construction of regu-
latory networks is essential for defining the interactions
between genes and gene products, and predictive models
may be used to develop novel therapies [1,2]. Both
microarrays and more recently next generation sequen-
cing provide the ability to quantify the expression levels
of all genes in a given genome. Often, in such experi-
ments, gene expression is measured in response to drug
treatment, environmental perturbations, or gene knock-
outs, either at steady state or over a series of time
points. This type of data captures information about the
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reproduction in any medium, provided the or
effect of one gene’s expression level on the expression
level of another gene. Hence, such data can, in principle,
be reverse engineered to provide a regulatory network
that models these effects.
A regulatory network can be represented as a directed

graph, in which each node represents a gene (in our case
an mRNA level) and each directed edge (r!g) repre-
sents the relationship between regulator r and gene g.
We aim to infer the directed edges that describe the
relationships among the nodes. In this case, the causal
relationship is statistically inferred, in contrast to the
classic definition of causality used in biology to imply
direct physical interaction leading to a phenotypic
change. This is a challenging problem, especially on a
genome-wide scale, since the goal is to unravel a small
number of regulators (parent nodes) out of thousands of
candidate nodes in the graph. Even with high-
dimensional gene expression data, network inference is
difficult, in part because of the small number of
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observations for each gene. In order to improve network
inference, one would like a coherent approach to inte-
grate external knowledge and data to both fill in gaps in
the gene expression data and to constrain or guide the
network search.
In this article, we present a network inference method

that addresses the dimensionality challenge with a
Bayesian variable selection method. Our method uses a
supervised learning framework to incorporate external
data sources. We applied our method to a set of time-
series mRNA expression profiles for 95 yeast segregants
and their parental strains, over six time points in re-
sponse to a drug perturbation. This extends our previous
work [3] by incorporating prior probabilities of tran-
scriptional regulation inferred using external data
sources. Our method also accommodates feedback
loops, a feature allowed only in some current network
construction methods.

Previous work
Bayesian networks [4-6] are one of the most popular
modeling approaches for network construction using
gene expression data [7-17]. A Bayesian network is a
probabilistic graphical model for which the joint distri-
bution of all the nodes is factorized into independent
conditional distributions of each node given its parents.
The goal of Bayesian network inference is to arrive at a
directed graph such that the joint probability distribu-
tion is optimized globally. While different Bayesian net-
work structures may give rise to the same probability
distribution, so that such networks in general do not
imply causal relationships, prior information can be used
to break this nonidentifiability so that causal inferences
can be made. For example, systematic sources of per-
turbation such as naturally occurring genetic variation in
a population or specific drug perturbations in which re-
sponse is observed over time can lead to reliable causal
inference [1,2,18,19]. A Bayesian network is a directed
acyclic graph (DAG). Therefore, cyclic components or
feedback loops cannot be accommodated. This DAG
constraint is an obstacle to using the Bayesian network
approach for modeling gene regulatory networks be-
cause feedback loops are typical in many biological sys-
tems [20]. The DAG constraint is removed when
dynamic Bayesian networks are used to model time-
series expression data [19,21-24]. Dynamic Bayesian
networks represent genes at successive time points as
separate nodes, thus allowing for the existence of cycles.
Bayesian network construction is an NP-hard problem
[25,26], with computational complexity increasing expo-
nentially with the number of nodes considered in the
network construction process. In spite of some attempts
to reduce the computational cost [27], the Bayesian net-
work approach in general is computationally intensive to
implement, especially for network inference on a
genome-wide scale.
In regression-based methods, network construction

is recast as a series of variable selection problems to
infer regulators for each gene. The greatest challenge
is the fact that there are usually far more candidate
regulators than observations for each gene. Some
authors have used singular value decompositions to
regularize the regression models [28-30]. Others have
built a regression tree for each target gene, using a
compact set of regulators at each node [31-34].
Huang et al. [35] used regression with forward selec-
tion after pre-filtering of candidates deemed irrelevant
to the target gene, and Imoto et al. [16] used non-
parametric regression embedded within a Bayesian
network. L1-norm regularization, including the elastic
net [36,37] and weighted LASSO [38], has also been
widely used [39-49].
Ordinary differential equations (ODE) provide an-

other class of network construction strategies [50-53].
Using first-order ODEs, the rate of change in tran-
scription for a target gene is described as a function
of the expression of its regulators and the effects
caused by applied perturbations. ODE-based methods
can be broadly classified into two categories, depend-
ing on whether the gene expressions are measured at
steady state [54-58] or over time [51-53]. As an ex-
ample, the TSNI (Time Series Network Identification)
algorithm used ODEs to model time series expression
data subject to an external perturbation [53]. To han-
dle the dimensionality challenge (i.e. the number of
observations per gene is much smaller than the num-
ber of genes), Bansal et al. employed a cubic smooth-
ing spline to interpolate additional data points, and
applied Principal Component Analysis to reduce
dimensionality.
To help mitigate problems with using gene expression

data in network inference, external data sources can be
integrated into the inference process. Public data reposi-
tories provide a rich resource of biological knowledge
relevant to transcriptional regulation. Integrating such
external data sources into network inference has become
an important problem in systems biology. James et al. [43]
incorporated documented experimental evidence about
the presence of a binding site for each known transcrip-
tion factor (TF) in the promoter region of its target
gene in Escherichia coli. Djebbari and Quackenbush
[13] used preliminary networks derived from literature
indexed in PubMed and protein-protein interaction (PPI)
databases as seeds for their Bayesian network analysis.
Zhu et al. [59] showed that combining information from
TF binding sites and PPI data increased overall predict-
ive power. Geier et al. [15] examined the impact of ex-
ternal knowledge with different levels of accuracy on
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network inference, albeit on a simulated setting. Imoto
et al. [16] described different ways to specify knowledge
about PPI, documented regulatory relationships and
well-studied pathways as prior information. Lee et al.
[44] presented a systematic way to include various types
of biological knowledge, including the gene ontology
(GO) database, ChIP-chip binding experiments and a
compressive collection of information about sequence
polymorphisms.

Our contributions
This article is an extension of Yeung et al. [3] which
adopted a regression-based framework in which candi-
date regulators are inferred for each gene using expres-
sion data at the previous time point. Iterative Bayesian
model averaging (iBMA) [60-62] was used to account
for model uncertainty in the regression models. A super-
vised framework was used to estimate the relative con-
tribution of each type of external knowledge and from
this a shortlist of promising regulators for each gene was
predicted. This shortlist was used to infer regulators for
each gene in the regression framework.
Our contributions are four-fold. First, we develop a

new method called iBMA-prior that explicitly incorpo-
rates external biological knowledge into iBMA in the
Figure 1 Overview of iBMA-prior with a highlight of our main contrib
form of a prior distribution. Intuitively, we consider
models consisting of candidate regulators supported by
considerable external evidence to be frontrunners. A
model that contains many candidate regulators with lit-
tle support from external knowledge is penalized. Sec-
ond, we demonstrate the merits of specifying the
expected number of regulators per gene as priors
through iBMA-size, which is a simplified version of
iBMA-prior without using gene-specific external know-
ledge. Third, we refine the supervised framework to ad-
just for sampling bias towards positive cases in the
training data, thereby calibrating the prior distribution.
Fourth, we expand our benchmark to include simulated
data, and compare our iBMA methods to L1-regularized
regression-based methods. Specifically, we applied
iBMA-prior to real and simulated time-series gene ex-
pression data, and found that it out-performed our pre-
vious work [3] and other leading methods in the
literature on these data, producing more compact and
accurate networks. Figure 1 summarizes iBMA-prior
and our main contributions.

Results and discussion
We applied our method, iBMA-prior, to a time-series
data set of gene expression levels for 95 genotyped
utions.
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haploid yeast segregants perturbed with the macrolide
drug rapamycin over 6 time points [3]. These data are
described in detail in the Methods section. To evaluate
the performance of iBMA-prior, other published
regression-based network construction methods were
applied to the same time-series gene expression data set
and the resulting networks were assessed for the recov-
ery of documented regulatory relationships that were
not used in the network construction process. We also
checked whether each method recovered target genes
enriched in upstream regions containing the binding
sites of known TFs. We further carried out a simulation
study to assess our method.

Comparison of different methods
First, we assessed the improvement of iBMA-prior over
that of our previous work iBMA-shortlist from Yeung
et al. [3] (see Methods for details) when applied to the
same yeast time-series gene expression data. Then, we
compared our BMA-based methods to several L1-
regularized methods, including the least absolute shrink-
age and selection operator (LASSO) [36,63] and least
angle regression (LAR) [64]. Regularized regression
methods combine shrinkage and variable selection. L1-
regularized methods aim to minimize the sum of
squared errors with a bound on the sum of the absolute
values of the coefficients [65]. Efficient implementations
Table 1 Different regression-based methods applied to the ti
regulatory networks

Method Data used

iBMA-prior Gene expression + external da

iBMA-shortlist Gene expression + external da

Network A from Yeung et al. [3] Gene expression + external da

LASSO-shortlist Gene expression + external da

LAR-shortlist Gene expression + external da

iBMA-size Gene expression data only

iBMA-noprior Gene expression data only

LASSO-noprior Gene expression data only

LAR-noprior Gene expression data only
are available for some of these methods, including
LASSO and LAR, and these methods have been applied
to high-dimensional data in which there are more vari-
ables than observations [64,66,67].
We also compared the performance of our method

with and without using external biological knowledge.
We assessed hybrid methods by combining LASSO and
LAR with the same supervised learning stage that was
used in iBMA-prior and iBMA-shortlist. Table 1 lists all
the methods compared in this analysis.

Assessment: recovery of documented relationships
To evaluate the accuracy of the network constructed by
each method, we assessed its concordance with the
Yeastract database, a curated repository of regulatory
relationships between known TFs and target genes in
the Saccharomyces cerevisiae literature [68]. If a regula-
tory relationship documented in Yeastract was also in-
ferred in the network, we concluded that this
relationship was recovered by direct evidence. Some of
the positive examples used in the supervised learning
stage are also documented in Yeastract. To avoid bias,
we did not consider those regulatory relationships in the
assessment. For each method compared, we applied
Pearson’s chi-square test to a 2 × 2 contingency table
that quantified the concordance of the inferred network
with the Yeastract database. We also computed the true
me-series gene expression data to construct gene

Description

ta Our proposed methodology that incorporates prior
model probabilities in BMA. These prior probabilities
were computed using external data sources.

ta Iterative BMA that uses external knowledge to shortlist
p= 100 candidates for each target gene. The revised
supervised step was used. Unlike iBMA-prior, the
information from the external data is not used in
variable selection via BMA.

ta This method is the same as in iBMA-shortlist, but using
the old version of supervised step described in
Yeung et al. [3]. We aim to study the impact of the
revised supervised step by comparing iBMA-shortlist
to network A.

ta LASSO [36,63] with the use of external knowledge to
shortlist p= 100 candidates for each target gene.

ta LAR [64] with the use of external knowledge to
shortlist p= 100 candidates for each target gene.

A simplified version of iBMA-prior that disregards
external knowledge, except for setting
πgr= τ=2.76/6000 = 0.00046 for all g and r.
This essentially turns Eq. (5) into a function of model
size only.

Iterative BMA without any use of external knowledge.

LASSO without any use of external knowledge.

LAR without any use of external knowledge.
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positive rate (TPR), defined as the proportion of the in-
ferred positive relationships that are documented in
Yeastract. It should be noted that Yeastract cannot
document all “true” relationships as the entire set of
regulatory relationships in yeast has yet to be defined.
We further considered the ratio of the observed number
of recovered relationships to its expected count as a re-
sult of random assortment (O/E). More detailed defini-
tions of the assessment criteria can be found in
Additional file 1: Figure S1.
Table 2 summarizes the assessment results for the nine

methods compared. Additional details are presented in
Additional file 2: Table S1. First, we studied the impact
of integrating external knowledge into the network con-
struction process under the iBMA framework. The TPR
of iBMA-prior was 18.00%, and the number of recovered
positive relationships was 593, which is 4.11 times more
than the expected number by random chance. Using the
revised supervised step described in this work without
incorporating prior probabilities into the iBMA frame-
work, iBMA-shortlist yielded a TPR of 12.78% and O/E
ratio of 2.92. This is an improvement over network A
(TPR= 9.98% and O/E= 2.28) constructed using the
same algorithm and our previous version of the super-
vised framework as described in Yeung et al. [3]. All of
our methods that incorporate external knowledge
(iBMA-prior, iBMA-shortlist and network A) produced
higher TPRs than iBMA-noprior for which only the
time-series gene expression data were used. In particular,
iBMA-prior produced a TPR (18.00%), which represents
a two-fold increase over iBMA-noprior (8.9%). There-
fore, the integration of external data clearly improved
the recovery of known relationships, and our latest
method, iBMA-prior, performed the best.
Next, we compared our iBMA-based methods to L1-

regularized methods. All the approaches that used
Table 2 Summary of the assessment result for different netw
expression data

Method Data used Network s

iBMA-prior Gene expression+ external data 21951

iBMA-shortlist Gene expression+ external data 67440

Network A from Yeung et al. Gene expression+ external data 65122

LASSO-shortlist Gene expression+ external data 255293

LAR-shortlist Gene expression+ external data 242495

iBMA-size Gene expression data only 17202

iBMA-noprior Gene expression data only 63026

LASSO-noprior Gene expression data only 564321

LAR-noprior Gene expression data only 194687
a The p-value of Pearson’s chi-square test measures the strength of association betw
b True positive rate (TPR) is defined as the proportion of inferred regulatory relation
c The number of misclassified cases is the sum of false positives and false negatives
d The O/E ratio is the number of folds the observed number of recovered relationsh
LASSO and LAR generated networks that had far
more mis-classifications than the iBMA-based meth-
ods. Specifically, applications of LASSO or LAR with-
out the supervised framework (LASSO-noprior and
LAR-noprior) had TPRs of 5.20% and 7.71% respect-
ively, the lowest among all the methods considered.
Incorporating external knowledge did improve both
LASSO and LAR, increasing the TPRs to about 11%
in both LASSO-shortlist and LAR-shortlist. However,
these TPRs were still lower than the TPRs for our
iBMA-based methods. Our iBMA-based methods
therefore outperformed methods based on LASSO and
LAR for these data.
Finally, we investigated the impact of priors in

iBMA-size, in which we applied a model size prior to
calibrate the sparsity of the inferred networks without
using any external data sources. iBMA-size can be
considered as a simplified version of iBMA-prior that
sets the regulatory potential (the prior probability that
a candidate regulates a given gene) to a constant par-
ameter that controls the expected number of regula-
tors per gene. From Table 2, iBMA-size produced a
TPR of 16.84%, which was higher than all the other
methods considered except iBMA-prior. Although the
number of recovered positive relationships was lower
than that of iBMA-prior (114 <593), iBMA-size also
produced a network that was more compact (17,202
edges compared to 21,951 edges). We would recom-
mend iBMA-size when gene-specific external informa-
tion is not available.
In Table 2 and Additional file 2: Table S1, all the iBMA

networks were thresholded at a posterior probability of 50%
(i.e., edges with posterior probability <50% were removed).
We found that iBMA-prior also out-performed other meth-
ods for these data over different posterior probability
thresholds (see Additional file 2: Table S2).
ork construction methods on the time-series gene

ize p-value of chi sq testa TPR (%)b # mis-class.c TP O/Ed

<1.00E-320 18.00 19282 593 4.11

<1.00E-320 12.78 24673 1287 2.92

1.68E-111 9.98 22485 662 2.28

<1.00E-320 11.07 46482 4169 2.53

<1.00E-320 11.28 44765 4017 2.57

5.75E-56 16.84 17622 114 3.84

1.75E-23 8.85 18903 186 2.02

2.56E-10 5.20 38399 1231 1.19

1.38E-40 7.71 22777 511 1.76

een an inferred network and the Yeastract database.
ships that are documented in Yeastract.
.
ips (i.e., TP) in excess of the expected count of recovery by chance.
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Assessment: transcription factor binding site analysis
In another assessment, we checked whether the set
of target genes containing known binding sites for a
certain TF were enriched among the child nodes of
that TF in each inferred network. We first extracted
the known binding sites for 129 TFs documented in
the JASPAR database [69,70]. Using TFMscan [71],
we retrieved a set of genes containing the known
binding sites in their upstream regions for each TF.
We then checked for enrichment of these genes
among the inferred child nodes of the corresponding
TFs in each network with Fisher’s exact test. Table 3
reports the number of TFs whose inferred child
nodes exhibited such enrichment, at a false discovery
rate (FDR) of 10%. All of the methods that made use
of external information outperformed all of those
that did not, illustrating the benefit of incorporating
external knowledge. LASSO-shortlist and LAR-
shortlist appeared to produce slightly better results
than iBMA-prior in this binding site analysis, but it
is likely the consequence of their larger network
sizes (>2x larger than iBMA prior).
Comparison with Lirnet
Lee et al. [44] proposed a regression-based network
construction method called Lirnet, which performed
well on a publicly available gene expression data set
from Brem et al. [72]. The Brem data set recorded
the steady-state expression levels for 112 yeast segre-
gants, 95 of which were profiled in our time-series
experiments under different growth conditions. Lee
et al. [44] showed that Lirnet out-performed Bayes-
ian networks on the same data, and so we compared
our top performer, iBMA-prior, with Lirnet. Because
Lirnet was formulated to analyze steady-state ex-
pression data with no time components, we adapted
Table 3 Number of transcription factors with gene sets
containing their known binding sites enriched by the
different methods in comparison

Method Data used # TFs with enriched
gene setsa

iBMA-prior Gene expression+ external data 38

iBMA-shortlist Gene expression+ external data 30

LASSO-shortlist Gene expression+ external data 41

LAR-shortlist Gene expression+ external data 44

iBMA-size Gene expression data only 4

iBMA-noprior Gene expression data only 9

LASSO-noprior Gene expression data only 13

LAR-noprior Gene expression data only 10
a FDR was controlled at 10%.
our method to static data by removing the subscript
referring to the time point from Equation (4):

E½Xg;sjD� ¼ βg;0 þ
X

r2Rg

βg;rXr;s; ð1Þ

We applied iBMA-prior to the same 3152-gene
subset of the Brem et al. data that Lee et al. [44]
used. Lirnet constrained the search of regulators for
each target gene to 304 known TFs. For fair com-
parison, we also confined the set of candidate regu-
lators to the same TFs. Networks constructed from
steady-state gene expression data cannot have feed-
back loops [73-75]. To detect and remove such loops
from our inferred network, we identified all strongly
connected components using the igraph R package,
and deleted the TF-gene link associated with the
lowest posterior probability for each cycle.
Same as before, we evaluated different methods by

assessing the concordance of the inferred networks
with the Yeastract database using Pearson’s chi-square
test. The assessment results in Table 4 show that
iBMA-prior outperformed Lirnet, almost doubling the
TPR and the O/E ratio while producing a comparable
number of misclassified regulatory relationships.

Simulation study
We designed and conducted a series of simulations
to further assess our proposed method. We used the
fitted model obtained from applying iBMA-prior to
the yeast time-series microarray data set as the true
underlying network, and generated simulated expres-
sion data from the estimated linear regression model.
Twenty data sets, each with the same dimensions as
the real time-series expression data, were independ-
ently generated as follows:

1. Set the prior probability of a regulatory
relationship for each gene pair to the same value
as the regulatory potential obtained at the
supervised learning stage using the real external
data.

2. Set the expression levels of the 3556 genes for
the 95 yeast segregants and the two parental
strains at time t = 0 as the observed
measurements in the real yeast time-series gene
expression
data.

3. For each target gene g, define the set Rg of true
regulators as those with a posterior probability
of ≥50% in our inferred network using iBMA-
prior and the real time-series data.

4. For time t= 1 to 5,
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Table 4 Comparison of iBMA-prior, iBMA-shortlist and Lirnet in network construction on the Brem data

Method Network size p-value of chi square testa TPR (%)b # misclass.c TP O/Ed

iBMA-prior 8000 7.75E-65 15.62 10198 323 2.41

iBMA-shortlist 35995 1.02E-59 10.99 14581 818 1.70

Lirnet 10491 1.90E-03 8.42 10080 132 1.30
a The p-value of Pearson’s chi-square test measures the strength of association between an inferred network and the Yeastract database.
b True positive rate (TPR) is defined as the proportion of inferred regulatory relationships that are documented in Yeastract.
c The number of misclassified cases is the sum of false positives and false negatives.
d The O/E ratio is the number of folds the observed number of recovered relationships (i.e., TP) in excess of the expected count of recovery by chance.
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For gene g= 1 to 3556, generate the simulated true
expression level for each segregant s using the
following equation:

X true
g;t;s ¼ βg;0 þ

X

r2Rg

βg;rX
true
r;t�1;s; ð2Þ

where the β ’s are given by the posterior expectation
of the regression coefficients corresponding to the
set of true regulators determined in Step 3.
5. Generate the simulated observed gene expression
levels by adding noise to the true expression levels
without measurement errors, i.e.,

Xg;t;s ¼ X true
g;t;s þ Eg;t;s; ð3Þ

where Eg,t,s~N(0, σg
2) with σg

2 being given by the
sample variance of the regression residuals in the
real data analysis. Others, e.g. [76], have shown that
the error in log ratios of expression data is
reasonably approximately by a normal distribution.

To assess the accuracy of networks inferred with the
simulated data sets, we compared each of these net-
works to the true network created in Step 3 of the data
generation algorithm. We used the same assessment cri-
teria as in the real data analysis with the true network
replacing Yeastract as the reference. As shown in Table 5,
iBMA-prior out-performed the other iBMA-based
methods, yielding a TPR of 71.13% averaged over 20
replications (compared to 47.23% for iBMA-shortlist,
20.31% for iBMA-size, and 8.55% for iBMA-noprior).
e 5 Assessment result for the different methods applied

od Data used Network siz

-prior Generated data + prior probability matrix 14011

-shortlist Generated data + prior probability matrix 30753

-size Generated data only 9349

-noprior Generated data only 29393

p-value of Pearson’s chi-square test measures the strength of association betw
positive rate (TPR) is defined as the proportion of correctly inferred regulator
number of misclassified cases is the sum of false positives and false negatives
rk: The values reported in the table were averaged across the 20 replications.
Conclusions
In this article, we have proposed a methodology that sys-
tematically integrates external biological knowledge into
BMA for network construction. A key feature of our ap-
proach is a formal mechanism to account for model un-
certainty. For each target gene, we arrive at a compact
set of promising models from which to draw inference,
the weights of which are calibrated by the external bio-
logical knowledge. Our method infers sparse, compact
and accurate networks upon the input of a reasonable
estimate of network density from both real and simu-
lated data. It does not put a hard limit on the number of
regulators per target gene, unlike some other methods,
such as Bayesian network approaches that impose this
constraint to reduce the computational burden. While
known TFs are in general favored a priori with the avail-
able external biological knowledge, we do not confine
the search for regulators to them. This allows for the
discovery of new regulatory relationships.
We showed that our method, iBMA-prior, consistently

outperformed our previous method [3] using both real and
simulated time-series gene expression data. We showed
that this improvement is mostly due to the incorporation of
external data sources via prior probabilities (iBMA-prior
versus iBMA-shortlist in Table 2). We also improved upon
our previous supervised method by adjusting for the sam-
pling bias of positive and negative training samples (iBMA-
shortlist versus network A in Table 2). We further showed
that our iBMA-based methods (iBMA-prior and iBMA-
shortlist) recovered a higher percentage of known regula-
tory relationships (i.e. higher TPRs) than other popular
variable selection methods (LASSO and LAR).
to data sets generated in the stimulation study

e p-value of chi sq testa TPR (%)b # mis-class.c TP

<1.00E-320 71.13 16029 9966

<1.00E-320 47.23 23652 14526

<1.00E-320 20.31 27503 1899

<1.00E-320 8.55 46317 2513

een an inferred network and the true network for the simulation study.
y relationships.
.
The true network for the simulation study contained a total of 21951 edges.
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A key contribution of this work is the derivation of
more compact networks with higher TPRs. Unfortu-
nately, due to incomplete knowledge, the evaluation of
false positives and false negatives is difficult using real
data. Therefore, we supplemented our study with a
simulation study designed to mimic the real data, and
showed that iBMA-prior produced fewer misclassified
cases (i.e. the sum of false positives and false negatives)
than other iBMA-based methods.
There are many directions for future work. A time-lag

regression model, i.e., one that accounts for the current
expression level of a target gene with the past expression
levels of its regulators, is used in our methodology. This
model formulation is in line with many other regression-
based methods targeting time-series gene expression
data [3,28,35,48,49]. The expression levels were taken at
regular time intervals in our yeast time-series gene ex-
pression data set. If the levels were measured at non-
uniform time intervals, we could create interpolated
time-series data with interpolation strategies employed
in the literature [51,53]. It would be useful to apply our
methodology to network construction in prokaryotic
systems as we would expect better performance in these
less complex systems that tend to be more dominated by
transcriptional control [77].

Methods
Time-series gene expression data for yeast segregants
We applied our method to a set of time-series mRNA
expression data measuring the gene expression levels
of 95 genotyped haploid yeast segregants perturbed
with the macrolide drug rapamycin [3]. These segre-
gants, along with their genetically diverse parents,
BY4716 (BY) and RM11-1a (RM), have been genotyped
previously [72]. Rapamycin was chosen for perturb-
ation because it was expected to induce widespread
changes in global transcription, based on a screen of
the public microarray data repositories [78-80]. This
perturbation allowed for the capture of a large subset
of all regulatory interactions encoded by the yeast gen-
ome. Each yeast culture was sampled at 10-minute
intervals for 50 minutes after rapamycin addition. The
RNA purified from these samples was profiled with
Affymetrix Yeast 2.0 microarrays. Probe signals were
summarized into gene expression levels using the
Robust Multi-array Average (RMA) method [81] and
genes not exhibiting significant changes in expression
were filtered from the data as described in [3]. The
data subset that remained consisted of the time-
dependent mRNA expression profiles of 3556 genes.
The complete time series gene expression data are
publicly available at ArrayExpress (http://www.ebi.ac.
uk/arrayexpress/) with accession number E-MTAB-412.
Bayesian model averaging (BMA)
BMA is a variable selection approach that takes model
uncertainty into account by averaging over the poster-
ior distribution of a quantity of interest based on mul-
tiple models, weighted by their posterior model
probabilities [82,83]. In BMA, the posterior distribution
of a quantity of interest Θ given the data D is given by

PrðΘ Dj Þ ¼
XK

k¼1

Pr Θ D;Mkj ÞPr Mk Dj Þðð , where M1,. . .,Mk

are the models considered. Each model consists of a set
of candidate regulators. In order to efficiently identify a
compact set of promising models Mk out of all possible
models, two approaches are sequentially applied. First,
the leaps and bounds algorithm [84] is applied to iden-
tify the best nbest models for each number of variables
(i.e., regulators). Next, Occam’s window is applied to
discard models with much lower posterior model prob-
abilities than the best one [85]. The Bayesian Informa-
tion Criterion (BIC) [86] is used to approximate each
model's integrated likelihood, from which its posterior
model probability can be determined.
While BMA has performed well in many applications

[60], it is hard to apply directly to the current data set in
which there are many more variables than samples.
Yeung et al. [62] proposed an iterative version of BMA
(iBMA) to resolve this problem. At each iteration, BMA
is applied to a small number, say, w= 30, of variables
that could be efficiently enumerated by leaps and
bounds. Candidate predictor variables with a low poster-
ior inclusion probability are discarded, leaving room for
other variables in the candidate list to be considered in
subsequent iterations. This procedure continues until all
the variables have been processed.

Supervised framework for the integration of
external knowledge
We formulated network construction from time series
data as a regression problem in which the expression of
each gene is predicted by a linear combination of the ex-
pression of candidate regulators at the previous time point.
Let D be the entire data set and Xg,t,s be the expression of
gene g at time t in segregant s. Denote by Rg the set of reg-
ulators for gene g in a candidate model. The expression of
gene g is formulated by the following regression model:

E½Xg;t;sjD� ¼ βg;0 þ
X

r2Rg

βg;rXr;t�1;s; ð4Þ

where E denotes expectation and β’s are regression coeffi-
cients. For each gene, we apply iBMA to infer the set of
regulators.
To account for external knowledge in the network con-

struction process, Yeung et al. [3] introduced a supervised
framework to estimate the weights of various types of

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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evidence of transcriptional regulation and subsequently
derived top candidate regulators. For instance, a target
gene is likely to be co-expressed with its regulators across
diverse conditions in publicly available, large-scale micro-
array experiments [78,87,88]. ChIP-chip data [89] provide
supporting evidence for a direct regulatory relationship be-
tween a given TF and a gene of interest by showing that
the TF directly binds to the promoter of that gene. A can-
didate regulator with known regulatory roles in curated
databases such as the Saccharomyces Genome Database
(SGD) [90] would be favored a priori. Polymorphisms in
the amino acid sequence of a candidate regulator that
affect its regulatory potential provide further evidence of a
regulatory relationship [44]. Common gene ontology (GO)
[91] annotations for a target gene and candidate regulators
also provide evidence of functional relationship.
To study the relative importance of the various types

of external knowledge from the supervised framework, we
collected 583 positive examples of known regulatory rela-
tionships between TFs and target genes from the Saccharo-
myces cerevisiae Promoter Database (SCPD) [92] and the
Yeast Protein Database (YPD) [93]. Random sampling of
these TF-gene pairs was used to generate 444 negative
examples. Logistic regression using BMA was applied to es-
timate the contribution of each type of external knowledge
in the prediction of regulatory relationships. The fitted
model was then used to predict the regulatory potential πgr
of a candidate regulator r for a gene g, i.e., the prior prob-
ability that candidate r regulates gene g, for all possible
regulator-gene pairs. Next, the regulatory potentials were
used to rank and shortlist the top p candidate regulators for
each gene (p=100 by default in our experiments). The
shortlisted candidates were then input to BMA for variable
selection in the network construction process.

Incorporating prior probabilities into iBMA
The potential benefit of using information from external
knowledge to refine the search for regulators was shown
by Yeung et al. and many others [3,13,15-17,43,44].
However, external knowledge was only used to shortlist
the top p candidate regulators for each target gene in
Yeung et al. Here, we develop a formal framework that
fully incorporates external knowledge into the BMA net-
work construction process.
We associate each candidate model Mk with a prior

probability, namely:

Pr Mkð Þ /
Y

r

πδkr
gr 1� πgr
� �1�δkr ; ð5Þ

where πgr is the regulatory potential of a candidate regu-
lator r for a gene g, δkr= 1 if r 2Mk and δkr= 0 otherwise
[85,94]. Intuitively, we consider models consisting of
candidate regulators supported by considerable external
evidence to be frontrunners. A model that contains
many candidate regulators with little support from exter-
nal knowledge is penalized.
The posterior model probability of model Mk is

given by

Pr Mk Dj Þ / f D Mkj ÞPr Mkð Þ;ðð ð6Þ
where f(D | Mk) is the integrated likelihood of the
data D under model Mk, and the proportionality con-
stant ensures that the posterior model probabilities sum
up to 1.
Then Occam’s window was used to discard any model

Mk having a posterior odds less than 1/OR relative to
the model with the highest posterior probability, Mopt.
The parameter OR controls the compactness of the set
of selected models, and here we set it to 20.

Extension of iBMA: cumulative model support
In Yeung et al. [3], the models selected in an intermedi-
ate iteration by iBMA were not recorded once that iter-
ation was completed, and the final set of models selected
were chosen only from those considered in the last iter-
ation. While computationally efficient, this strategy over-
looked the possibility of accumulated model support
over multiple iterations. We improve the model selec-
tion process by storing all the models selected in any it-
eration and applying Occam’s window to this cumulative
set of models as the last step in the algorithm.
At the end of each iteration of iBMA, and after apply-

ing Occam’s window to all models considered, we com-
pute the posterior inclusion probabilities for each
candidate regulator r by summing up the posterior prob-
abilities of all models that involve this regulator.

Prðβgr 6¼ 0jDÞ ¼
X

k:Mk2Φ
Pr Mk Dj Þ � δkr :ð ð7Þ

where F is the set of all possible models for gene g, βgr is
the regression coefficient of a candidate regulator r for
a gene g, δkr= 1 if r 2Mk and δkr= 0 otherwise. Finally,
we infer regulators for each target gene g by threshold-
ing on the posterior inclusion probability at a predeter-
mined level (50% in all our experiments unless
otherwise specified).

Extensions of the supervised framework
We have extended the supervised framework of
Yeung et al. [3] in three ways.

Imputation of missing values in ChIP-chip data
About 9% of the ChIP-chip data used in the training
samples were originally undefined. The ChIP-chip data
take the form of p-values for the statistical tests of
whether candidate regulator r binds to the upstream re-
gion of gene g in-vivo. In [3], those undefined values were
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regarded as lack of evidence for upstream binding and
assigned values of one. Here, we used multiple imputation
[95,96], in which we sampled with replacement from the
empirical distribution of the non-missing ChIP-chip data,
conditioning on the presence or absence of regulatory
relationships. We used 20 imputations as recommended
by Graham et al. [97] for scenarios with about 10% miss-
ing data. Logistic regression was then performed on the
training sample filled with the imputed ChIP-chip values.

Truncation of extreme values in external data
Some of the external data types used in the supervised
learning stage contained value ranges for individual
genes that far exceeded the ranges for these genes in the
training samples, e.g. the SNP-level information in Add-
itional file 2: Table S3. Therefore, we truncated all ex-
treme values in the external data to the respective
maximum value observed in the training samples.

Adjustment for sampling bias regarding positive and
negative cases
In the supervised framework of Yeung et al., the expected
number of regulators per target gene, computed as the
sum of regulatory potentials of all candidate regulators,
mostly fell between 400 and 600 (see Figure 2(a)). Such
an apparent overestimation of positive regulatory rela-
tionships was due to the fact that similar numbers of
positive and negative examples in the supervised learning
stage. Given the sparse nature of a gene regulatory net-
work, we expect the number of TF-gene pairs with regu-
latory relationships to be a small proportion of the total.
Here, we address this issue by using a strategy that

is commonly used in case–control studies, in which dis-
ease (positive) cases are usually rare [98,99]. Let π1 and
π0 be the sampling rates for positive and negative cases
respectively. To adjust for the difference in the sampling
Figure 2 The expected number of regulators per target gene in accor
of regulators per target gene in the A. absence / B. presence of a proper m
negative examples respectively at the supervised learning stage.
rates, we add an offset of -log(π1/π0) to the logistic re-
gression model. Equivalently, we divide the predicted
odds by π1/π0. Previous literature has suggested that the
in-degree distribution of gene regulatory networks
decays exponentially [100-102]. Based on regulatory
relationships documented in various yeast databases
[90,92,93,103,104], Guelzim et al. [100] empirically esti-
mated the in-degree distribution of the regulatory net-
work as 157e-0.45m, where m denotes the number of TFs
for a target gene. This implies that each target gene is
regulated by approximately 2.76 TFs on average. Since
we have 583 positive training examples, 444 negative
examples, and 6000 yeast genes, we characterize such a
network with density τ= 2.76/6000 = 0.00046, and com-
pute π1 ¼ 583

6000�2:76 ¼ 3:52% , and π0 ¼ 444
6000� 6000�2:76ð Þ½ � ¼

0:0012% . Therefore, we divide all the predicted odds
by π1/π0 = 2853. For instance, if the original predicted
probability is 0.9, i.e., the predicted odds is 9, then after
scaling the odds adjusted for sampling bias, it becomes
9/2853 = 0.0032, implying an adjusted probability of
0.0032. As shown in Figure 2(b), the expected number
of regulators per target gene has dropped substantially
to a level of around 0.5 after our three correction strat-
egies (adjustment of sampling bias, imputation of miss-
ing ChIP-chip values and truncation of extreme values)
are applied. Additional file 1: Figure S2 shows the in-
cremental merit of our correction strategies. Additional
file 2: Table S3 gives the estimated regression coeffi-
cient and the posterior probability for each external
data type in our revised supervised framework.
To assess the sensitivity of our results to changes in

the assumed prior average number of regulators per tar-
get gene, we repeated the analysis with various levels of
the network density τ, and found that the assessment
results were comparable. Please see the Additional file 3
for complete details.
dance with external knowledge. Histogram of the expected number
easure to account for the difference in sampling rates for positive and
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Summary: outline of algorithm

1. For each gene g, rank the candidate regulators based
on the regulatory potentials predicted from the
supervised framework.

2. Shortlist the top p candidates from the ranked list
(p= 100 in our experiments).

3. Fill the BMA window with the top w candidates in
the shortlist (w= 30 in our experiments).

4. Apply BMA with prior model probabilities based on
the external knowledge:
a. Determine the best nbest models for each
number of variables using the leaps and bounds
algorithm (nbest= 10 in our experiments).

b. For each selected model, compute its prior
probability relative to the w candidates in the
current BMA window using Equation (5).

c. Remove the w candidate regulators with posterior
inclusion probability Pr(βgr 6¼ 0 | D) <5%.

5. Fill the w-candidate BMA window with those not
considered yet in the shortlist.

6. Repeat steps 4–5 until all the p candidates in the
shortlist have been processed.

7. Compute the prior probability for all selected
models relative to all the p shortlisted candidates
using Equation (5).

8. Take the collection of all models selected at any
iteration of BMA, and apply Occam’s window,
reducing the set of models.

9. Compute the posterior inclusion probability for each
candidate regulator using the set of selected models,
and infer candidates associated with a posterior
probability exceeding a pre-specified threshold (50%)
to be regulators for target gene g.

External knowledge is used in the following ways:

1. All the candidate regulators are ranked according to
their regulatory potentials, which were predicted
using the available external data sources at the
supervised learning stage.

2. Model selection is performed by comparing models
against each other based on their posterior odds. As
shown by Equation (6), the posterior odds is
proportional to a product of the integrated
likelihood and the prior odds. The prior probability
and, therefore, the prior odds, of a candidate model
are formulated as a function of regulatory potentials.

3. The posterior inclusion probability of each candidate
regulator, from which inference is made about the
presence or absence of a regulatory relationship, is
positively related to its regulatory potential. As
shown in Equation (5), a factor of πgr is contributed
to each model in which the candidate g is included.
Otherwise, a factor of 1- πgr is contributed to
each model.

Additional files

Additional file 1: Supplementary figures.

Additional file 2: Supplementary tables.

Additional file 3: Text containing supplementary materials and
methods.
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