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Compartmentation of glycogen metabolism
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Abstract

Background: Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods
of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the
knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is
why we accepted a challenge to create a software tool that allows deciphering the compartmentation of
metabolites based on the analysis of average isotopic isomer distribution.

Results: The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic
pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes,
and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and
glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose
or glucose and lactate together (with label either in glucose or lactate). The simulations assumed either a single
intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic
composition of glycogen. Model discrimination test was applied to check the consistency of both models with
experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed
the range of changes in metabolic fluxes in liver cells.

Conclusions: The analysis of compartmentation of metabolic networks based on the measured 13C distribution
was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of
evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation.
The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is
inconsistent with the idea of perfect mixing of hexose phosphates in cytosol. In contrast, the observed distribution
indicates the presence of a separate pool of hexose phosphates that is channeled towards glycogen synthesis.

Background
13C isotope tracing, aimed in the evaluation of metabolic
fluxes in living cells has been developing during last
decades [1]. This experimental technique required a spe-
cific mathematical analysis, and it was created [2]. Cur-
rently, the stable isotope tracing of metabolites has been
refined and is used to identify the adaptive changes of
fluxes in man in normal and diseased states [3], in iso-
lated cells [4], cancer cell cultures [5], and organisms
such as fungi [6], yeast [7,8], etc. 13C tracer fluxomics
can be combined with the analysis of gene and protein

expressions to provide insight into multilevel regulation
of cellular processes [9].
However, the rapidly developing experimental 13C tra-

cer metabolomics surpasses the theoretical analysis of
measured data. For a long time the detailed analysis of
isotopomer distribution was possible only for isotopic
steady state [10]. The tools applicable for analysis of
non-steady state conditions appeared relatively recently
[11-14], and the methodology of rule-based modeling
used in some of these tools expanded to different areas
of analysis of complex biological systems [15]. Although
the analysis of 13C tracer data could result in the discov-
ery of unknown metabolic pathways [16], the existing
tools were designed mainly for the evaluation of meta-
bolic fluxes assuming certain established topology of
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reaction network. However, ignoring the specificity of
topology of particular reaction network, or in other
words its compartmental structure, can compromise the
results of metabolic flux analysis [17].
The topology of metabolic network could be compli-

cated by substrate channeling [18-24], which could be
seen as metabolite compartmentation. The latter follows
from the definition, which says that a pathway inter-
mediate is ‘channeled’ when, a product just produced in
the pathway has a higher probability of being a substrate
for the next enzyme in the same pathway, compared to
a molecule of the same species produced in a different
place [23,25].
Usually, studies designed for the analysis of channeling

require invasive experiments, such as permeabilization
of cells and determination of diffusion of labeled meta-
bolites from or into the presumable channel [22-24].
However, it can be expected that experimental proce-
dures destroy some kinds of channeling that occur in
intact cells. Moreover, one cannot exclude the possibility
that the metabolic channeling and compartmentation
differ between various tissues and this could increase
indefinitely the number of experiments necessary for
defining the structure of metabolism in cells. Here, we
propose a solution for such a problem: to determine the
metabolic compartmentation by analyzing 13C isotopic
isomer distributions in products of metabolism of
labeled substrates; i.e. in the same study, which is
designed for the evaluation of metabolic flux profile,
thereby, not recruiting additional experiments.
Thus, the objective of the presented work is to create

and implement a tool assessing the compartmentation
based on 13C distribution. The challenge here is that,
although the same compound, located in different sub-
cellular spaces, likely possesses compartment-specific
13C signatures, the measurements average out the com-
partment-specificity [17,26,27]. The tool must help deci-
pher the compartment-specific distribution of metabolic
fluxes, consistent with the measured average labeling.
Such deciphering is based on a simple idea that the
compartment-specific simulation better fit 13C data, if
the really existing compartments are taken into account.
To estimate the goodness of data fit by various schemes
of metabolic compartmentation we implement model
discrimination analysis.
Two out of three experiments analyzed were described

elsewhere [28], and metabolic fluxes were evaluated
based on the application of simple formulas directly to
experimental data. Such simple analysis (the only
achievable then) does not account for all possible
exchange of isotopes and their recycling. Moreover,
these formulas imply that the network topology is
known and can only give a formal ratio of main fluxes
without its verification. Whereas the simulation of

isotopic isomer distribution using the predicted fluxes
can be compared with experiments and thus verify the
predictions. Here, we describe the use of such simula-
tions for the analysis of network topology, which is
absolutely impossible by using simple formulas. The
new analytical tool provides the opportunity to re-evalu-
ate previously generated experimental data gaining new
insights into the topology of the studied metabolic net-
work, and assessing metabolic flux profile in detail in
various physiological and pathological conditions.

Results
Accounting for channeling in the reaction scheme of
model
The dynamics of all possible isotopic isomers in glucose,
lactate and glutamate from the incubation medium and
glucose from glycogen in cell pellets, accumulated by
two hours of incubation of liver cells with [1,2-13C2]D-
glucose [28], were simulated with Isodyn using two dif-
ferent schemes that included either one or two pools of
hexose phosphates, as shown in Figure 1. The condi-
tions of incubation do not assume to reach steady state
for the labeling of measured external metabolites, and
the dynamic simulations correspond to non-steady state
conditions of the experiment. The model, which does
not consider channeling (referred to as model A),
accounts for a single, well-mixed, common hexose 6-
phosphate pool (Figure 1A). In accordance with the
definition given in introduction, channeling assumes the
existence of metabolite compartments, which could have
had a different isotopomer (and isotopologue) composi-
tion and does not freely mix by diffusion with a pool of
the same metabolite outside the channel. The presence
of two compartments with different isotopomer compo-
sitions indicates metabolite channeling (Figure 1B), and
the respective model is referred to as model B.

Fitting the measured isotopologue distribution
The same stochastic algorithm of minimization of nor-
malized deviations between the measured and computed
data (c2) in the global space of parameters (described in
Methods) was applied to each model for data fitting.
The fractions of isotopologues measured in glucose, lac-
tate, fragments of glutamate and glycogen, and their
best fit using the two models are shown in Table 1. c2

is shown for each metabolite separately and Σ1c
2 sums

all the individual c2.
Model A that does not assume metabolite channeling

in glycogen synthesis fitted the experimental isotopolo-
gue distribution with Σ1c

2 = 38.28 (Table 1). 22 experi-
mental points and 16 essential parameters, calculated as
described in Methods, defined the number of degrees of
freedom, F = 6. The given values of Σ1c

2 and the num-
ber of degrees of freedom defining an extremely low
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Figure 1 The schemes of kinetic models used as a base for simulation of isotopologue distribution. Metabolites are connected by
biochemical reactions represented by arrows. Various colors indicate metabolites and reactions of specific pathways: green, glycolysis/
gluconeogenesis; red, pentose phosphate pathways; orange, TCA cycle. The metabolites enclosed in ellipses are considered to be in fast
equilibrium. (A), the basic model that includes one pool of hexose phosphates common for glycolysis and gluconeogenesis. (B), the model that
includes also the additional pool of hexose phosphates (blue) that represents channeling in gluconeogenesis. Abbreviations are explained in the
list of abbreviations in the text.
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value of incomplete gamma function Q = 9.9·10-7 unam-
biguously indicates that the model which does not
account for channeling should be rejected [29].
Conversely, model B that assumes channeling fits the

measured isotopologue distribution much better, with
Σ1c

2 = 3.13 (Table 1). This model has four degrees of
freedom, deduced from the same number of experimen-
tal points, and 18 essential parameters. These values
defined Q = 0.536, which allowed the acceptance of the
model.
Thus, the comparative study of two schemes based on

the goodness of fit of the experimental data allowed
rejection of the model that assumes a single common
pool of hexose phosphates and acceptance of the alter-
native model, which accounts for channeling of inter-
mediates in glucose metabolism.

Model validation
Electron impact ionization used in mass spectrometry
often splits molecules into fragments. Since the localiza-
tion of such fragments in the molecule is known, the
fact that a 13C atom belongs to a given fragment
restricts the possible positions of this isotope in the
molecule. This information can further restrict the pos-
sible set of solutions. The fractions of isotopologues
from glycogen were measured not only in whole glucose
molecules, but also in their fragments containing carbon
atoms either 1-4 [28] or 3-6. For model B, the best fit
described above fits also the whole set of data including
the fragments of glucose from glycogen as Table 1
shows, giving Σtc

2 = 12.52. This value and 8 degrees of
freedom deduced for this model from 29 experimental
points and 21 essential parameters define the value Q =
0.129. This value indicates that the model is acceptable,
thus confirming the conclusion based on the simulation
of 13C distribution in the whole molecule of glucose
from glycogen without accounting for the fragments.
As Table 1 shows, model A fits the whole set of data

with Σtc
2 = 74.9. With number of degrees of freedom of

11 (29 experimental points and 18 essential parameters),
the value of Q was 1.42·10-11. This value further indi-
cates that the model of a homogeneous pool of hexose
phosphates should be rejected.
Another validation of the channeling came from a ser-

ies of two experiments where hepatocytes were incu-
bated in the presence of glucose and lactate (as
described in Methods). The conditions in the two
experiments were virtually identical with the exception
that glucose was labeled in one of these experiments
[28] and lactate in the other. Cells consumed lactate,

Table 1 Measured and simulated fractions of
isotopologues and total concentrations of metabolites.

Experiment Simulated

mean sd Channeling Mixed

Glucose c2 = 0.442 0.406

m0 0.512 ± 0.0069 0.511 0.511

m1 0.00913 ± 0.002 0.0084 0.00839

m2 0.478 ± 0.00652 0.481 0.481

[mM] 19.7 ± 1.92 20.4 20.2

Lactate c2 = 1.43 7.32

m0 0.86 ± 0.0482 0.839 0.81

m1 0.0235 ± 0.00802 0.0237 0.0178

m2 0.0946 ± 0.0388 0.133 0.17

m3 0.022 ± 0.0438 0.00381 0.00145

[mM] 0.81 ± 0.51 0.959 1.48

Glutamate C2-C5 c2 = 0.0564 0.0424

m0 0.912 ± 0.0343 0.912 0.912

m1 0.0299 ± 0.0116 0.0301 0.0298

m2 0.0523 ± 0.0217 0.0574 0.0567

Glutamate C2-C4 c2 = 0.0049 0.00437

m0 0.919 ± 0.0339 0.919 0.919

m1 0.0365 ± 0.00175 0.0356 0.355

m2 0.0446 ± 0.0166 0.0454 0.0451

Glycogen c2 = 1.2 30.5

m0 0.608 ± 0.0388 0.598 0.658

m1 0.0162 ± 0.0033 0.0151 0.0271

m2 0.362 ± 0.0351 0.375 0.299

m3 0.00399 ± 0.0011 0.00422 0.00791

m4 0.00961 ± 0.0026 0.00748 0.00749

m5 0.000464 ± 0.00016 0.000432 0.000533

mg/mL 0.355 ± 0.112 0.313 0.232

Σ1 c2 3.13 38.28

Glycogen C1-C4 c2 = 1.42 6.68

m0 0.613 ± 0.0448 0.627 0.679

m1 0.0224 ± 0.00834 0.0133 0.0297

m2 0.357 ± 0.0425 0.358 0.289

Glycogen C3-C6 c2 = 7.97 30

m0 0.952 ± 0.00767 0.952 0.951

m1 0.00743 ± 0.00211 0.0131 0.018

m2 0.0371 ± 0.00467 0.0333 0.0279

Σ2c2 9.21 36.68

Σtc2 = Σ1c2+Σ2c2 12.52 74.95

Isotopologues (m0, non-labeled; m1, containing one 13C isotope; m2, two 13C
isotopes, etc) produced by isolated hepatocytes from glucose as the only
substrate contained 50% of [1,2-13C2]D-glucose were measured in glucose
from medium, glucose from glycogen and its fragments, lactate, and fragments
of glutamate after two hours of incubation. The measurements are presented
as mean ± standard deviation. The data were simulated using two models that
either accounted for channeling or suggested a single “mixed” pool of hexose
phosphates in accordance with the schemes presented in Figure 1. The fitting
was performed using a stochastic algorithm described in Methods. The
difference between the best fit and experimental data (c2, see Methods) are
shown for each metabolite and summarized for the whole set of data.

Marin de Mas et al. BMC Systems Biology 2011, 5:175
http://www.biomedcentral.com/1752-0509/5/175

Page 4 of 14



and the label from lactate ascended up to extracellular
glucose as shown in Table 2. In these two experiments,
the incubations with liver cells resulted in different iso-
topic isomer distribution since different substrates were
labeled at the beginning. However, the same conditions
for cell metabolism suggest that the same set of meta-
bolic fluxes must fit the isotopologue distribution mea-
sured in both the experiments. Respectively, the
algorithm subsequently performed the simulations of
two experiments for the same set of model parameters
and summed c2 for both simulations. The algorithm for
parameter optimization had searched for the set of

parameters that minimized Σc2 and Table 2 shows the
best fit of the two experiments performed using each of
the two models.
Model B fits both the experiments with Σc2 = 36.1

(22.52 when label is in glucose and 13.56 when label is
in lactate). Both the experiments together provided 46
points. With 24 essential parameters, this problem has
22 degrees of freedom that corresponds to Q = 0.09,
thus indicating that the model is acceptable. If this set
of parameters which gives the best fit for model B is
used for model A (where the same flux of glycogen
synthesis is directed from the common pool of

Table 2 Isotopologue distribution produced by isolated hepatocytes in the presence of glucose and lactate.

Experiment 1 Simulations Experiment 2 Simulations

label in glucose B A label in lactate B A

glucose: c2 = 7.21 5.72 c2 = 5.52 0.576

m0 0.532 ± 0.0098 0.514 0.514 0.979 ± 0.01 0.976 0.984

m1 0.00846 ± 0.0022 0.0114 0.00918 0.0063 ± 0.0055 0.00484 0.00354

m2 0.459 ± 0.0103 0.473 0.475 0.0055 ± 0.0064 0.00891 0.00469

m3 – – – – 0.0064 ± 0.0016 0.00996 0.00628

[mM] 20.6 ± 2.91 21 21.1 20.9 ± 2.22 20.8 20.9

glycogen: c2 = 6.46 27.3 c2 = 2.22 5.73

m0 0.681 ± 0.032 0.683 0.57 0.909 ± 0.026 0.907 0.9

m1 0.0119 ± 0.031 0.00767 0.0131 0.017 ± 0.0066 0.0166 0.0225

m2 0.302 ± 0.031 0.308 0.409 0.038 ± 0.01 0.0313 0.0298

m3 0.0017 ± 0.001 0.000136 0.00208 0.0273 ± 0.0071 0.0363 0.04

m4 0.0032 ± 0.0016 0.000593 0.00565 0.0036 ± 0.0016 0.00329 0.00317

m5 – – – – 0.003 ± 0.014 0.00335 0.00271

mg/mL 0.263 ± 0.084 0.256 0.196 0.262 ± 0.0691 0.256 0.196

glgn14: c2 = 5.31 19.2 c2 = 2.23 4.59

m0 0.678 ± 0.032 0.692 0.588 0.93 ± 0.024 0.924 0.921

m1 0.016 ± 0.0046 0.00561 0.0112 0.033 ± 0.009 0.0343 0.0472

m2 0.3 ± 0.032 0.302 0.399 0.019 ± 0.0079 0.0178 0.0128

m3 – – – – 0.014 ± 0.005 0.0209 0.0163

m4 – – – – 0.004 ± 0.003 0.00267 0.0264

glgn36: c2 = 1.48 14.2 c2 = 1.97 4.48

m0 0.98 ± 0.0101 0.987 0.968 0.924 ± 0.024 0.923 0.911

m1 0.00408 ± 0.0018 0.0051 0.0101 0.0265 ± 0.007 0.0332 0.0348

m2 0.0139 ± 0.0078 0.00766 0.216 0.027 ± 0.0081 0.0188 0.0219

m3 – – – – 0.021 ± 0.0067 0.0221 0.0292

lactate: c2 = 2.06 2.73 c2 = 1.62 9.76

m0 0.974 ± 0.026 0.991 0.985 0.636 ± 0.017 0.621 0.608

m1 0.0026 ± 0.0019 0.000974 0.00135 0.0166 ± 0.0025 0.0167 0.0172

m2 0.0094 ± 0.0037 0.00773 0.0141 0.0318 ± 0.0035 0.0302 0.0245

m3 0.00136 ± 0.023 0.00000227 0.0000436 0.316 ± 0.0213 0.332 0.35

[mM] 6.18 ± 0.75 6.8 6.73 3.18 ± 0.43 6.29 6.22

Σc2 22.52 69.15 13.56 25.136

Before incubation the medium contained either 50% of [1,2-13C2]D-glucose and unlabeled lactate (experiment 1) or 50% uniformly 13C-labeled lactate and
unlabeled glucose (experiment 2). The measurements are presented as mean ± standard deviation. The data were fit by two models (A and B). The conditions of
incubation and measurements, and data fitting are described in Methods. The difference between the best fit and experimental data (c2, see Methods) are
shown for each metabolite and summarized for the whole set of data.
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hexoses), Σc2 increases up to 331, where glycogen gave
the greatest Σc2. The fitting procedure reduced Σc2 for
model A down to 94.286 (69.15 when label was in glu-
cose and 25.13 when label was in lactate) with the iso-
topologue distribution shown in Table 2. For this best
fit, the same number of experimental points (46), and
24 essential parameters (22 degrees of freedom) give
Q = 6.325·10-11, which indicates that model A is
incorrect.

Metabolic flux distribution
If model discrimination analysis indicates that a model
should be rejected, as in the case of model A, the distri-
bution of metabolic fluxes obtained with such a model
cannot be reliable. In contrary, if the analysis suggests
accepting a model, as in the case of model B, there is
much more confidence that it evaluates true metabolic
fluxes. Therefore we analyzed the distribution of meta-
bolite fluxes computed with model B. Table 3 shows

Table 3 Metabolic fluxes corresponding to the best fit of experimental data and their 99% confidence intervals

Glucose as the only substrate Glucose with lactate

99% confidence interval 99% confidence interval

bestfit (min - max) bestfit (min - max) Model A

hk1 0.0026894(0.002150-0.003080) 0.152266(0.074815-0.377413) 0.01981

hk2 0.0021436(0.001710-0.002480) 0.0056939(0.0041563-0.0076078)

g6pase1 5.50E-05(2.70E-5-7.80E-5) 0.150611(0.073125-0.375565) 0.01809

g6pase2 2.13E-05(0.0-0.000066) 0.005166(0.0029064-0.0071982)

pfk1 0.003048(0.002370-0.003530) 0.0023558(0.0015063-0.0046942) 0.00345

pfk2 0.0004816(0.0-0.000950) 0.0007975(0.0006197-0.0012778)

fbpase1 0.0004446(0.000270-0.000560) 0.0013469(0.0005781-0.0023709) 0.00363

fbpase2 0.0005496(0.000330-0.000690) 0.0023329(0.00161-0.0032427)

gp 2.56E-06(1.70E-6-5.10E-6) 0.000143(5.12E-05-0.0001883) 0.00000

gs 0.0021929(0.001660-0.002680) 0.0022087(0.0018593-0.0027097) 0.00188

aldf 0.0192413(0.007480-0.022580) 0.0159083(0.0153142-0.0163931) 0.01608

aldr 0.016706(0.004480-0.020410) 0.0164349(0.0153054-0.016708) 0.01625

aldex 0.0424386(0.010420-0.056150) 0.0137425(0.0103922-0.0195718) 0.01565

g3pep 0.0064103(0.004490-0.007700) 0.258278(0.1677705-0.3394195) 0.12224

pepg3 0.0013391(0.000140-0.002370) 0.258701(0.166264-0.339572) 0.12257

pk 0.0050704(0.003910-0.006230) 0.0199774(0.0157079-0.0239355) 0.01497

lacin 1.71E-07(1.20E-7-2.60E-7) 0.231716(0.1714965-0.2686475) 0.12266

lacout 0.00507(0.003910-0.006230) 0.222326(0.1621185-0.2590095) 0.11074

pc 1.20E-07(5.70E-8-1.90E-7) 0.0204457(0.0155337-0.0233495) 0.01542

pepck 1.16E-08(5.30E-9-2.80E-8) 0.020401(0.0154933-0.0232863) 0.01530

maloa 1.85E-07(9.60E-8-3.00E-7) 0.0835934(0.048937-0.111892) 0.03396

oamal 3.80E-08(1.30E-8-8.10E-8) 0.0747156(0.0368199-0.0997713) 0.02261

cs 2.55E-07(1.30E-7-4.00E-7) 0.008922(0.0069631-0.0147641) 0.01147

citmal 1.47E-07(8.40E-8-2.30E-7) 0.0088778(0.0069227-0.0146991) 0.01135

pdh 2.75E-07(7.70E-8-5.00E-7) 0.0089212(0.0069623-0.0147633) 0.01147

g6pdh 3.87E-06(2.80E-6-7.50E-6) 0.0018986(0.0013506-0.0021492) 0.00000

p5p > s7p 0.0011849(0.000880-0.002270) 0.0006229(0.0004459-0.0007215) 0.00051

s7p > r5p 0.0011925(0.000890-0.002280) 4.35E-06(2.56E-06-2.98E-05) 0.00047

f6p > p5p 9.59E-06(4.20E-6-3.40E-5) 4.02E-05(1.17E-05-9.84E-05) 0.00000

p5p > f6p 4.93E-06(2.80E-6-2.80E-5) 0.0006793(0.0004937-0.000751) 0.00000

f6p > s7p 1.85E-05(9.20E-6-7.30E-5) 1.40E-05(4.56E-06-2.45E-05) 0.00000

s7p > f6p 9.56E-06(4.80E-6-6.60E-5) 1.65E-06(9.03E-07-8.56E-06) 0.00000

p5p-g3p 0.0006152(2.70E-4-2.83E-3) 0.0017868(0.0007706-0.0033249) 0.00036

f6p-s7p 7.69E-08(2.10E-8-7.70E-7) 1.53E-05(4.62E-06-2.78E-05) 0.00000

p5p-s7p 0.0022967(1.37E-3-7.06E-3) 1.51E-06(8.37E-07-8.16E-06) 0.00067

f6p > s7p 0.0015144(0.000850-0.001940) 0.000862(0.0002796-0.0021263) 0.00117

s7p-f6p 0.0015015(0.000850-0.001920) 0.0014894(0.0008194-0.0026708) 0.00119

f6p-g3p 0.0075338(0.002170-0.013330) 0.0164459(0.0085357-0.0352201) 0.00230

s7p-e4p 0.0003018(0.000140-0.000550) 7.81E-05(2.01E-05-0.0002102) 0.00061

The names of fluxes are given in the list of abbreviations in the text.

Marin de Mas et al. BMC Systems Biology 2011, 5:175
http://www.biomedcentral.com/1752-0509/5/175

Page 6 of 14



metabolic fluxes corresponding to the best fit of the
measured data by model B, together with their 99% con-
fidence intervals. The metabolic fluxes of the two
experiments, performed in the presence of lactate using
two different substrate labelings, were the same (Table
2). Thus, Table 3 shows two sets of fluxes with their
confidence intervals evaluated by model B. One of the
sets corresponds to the best fit of isotopologue distribu-
tion measured only in the presence of glucose (as
shown in Table 1), and the other in the presence of glu-
cose and lactate (as shown in Table 2).
At first glance, a notable difference is seen between

metabolic fluxes under the two different conditions. The
fluxes for the best fit indicate that the presence of lac-
tate had perturbed the entire central carbohydrate meta-
bolism of hepatocytes. Without lactate, almost half of
the glucose consumed(hk) was used to replenish the gly-
cogen store (glgsn) that was exhausted during starvation,
and the rest was mainly converted to lactate except a
small part that was burned in TCA cycle. Although net
consumption of glucose did not change much by the
addition of lactate, the fluxes of glucose input (hk) and
output (g6ph) taken separately are increased by almost
two orders of magnitude. Thus, recycling of metabolites
increased without affecting the net influx of glucose.
The addition of lactate increased recycling in many
other points downstream of glucose entrance. This
refers to the flux through fructose bisphosphatase
(fbpase), which forms a futile cycle with phosphofructo-
kinase (pfk). The increase of flux transforming glyceral-
dehyde 3-phosphate into phosphoenolpyruvate (g3pep, it
lumped a set of reactions) is accompanied by the
increase of reactions in the reverse direction (pepg3).
Essentially there is an increased futile recycling through
pyruvate kinase (pk), pyruvate carboxylase (pc) and
phosphoenolpyruvate carboxykinase (pepck). This recy-
cling is accompanied by an increase of flux through the
TCA cycle (pdh, cs, citmal) linked with enhancing of
energy production. Some changes took place in the pen-
tose phosphate pathway, but they were not as impressive
as in glycolysis and TCA cycle.
The confidence intervals for some of the fluxes (e.g.

hkI) were large. However, many intervals for the two
studied conditions do not overlap, and so the changes
described above for the best fit remain qualitatively the
same for the whole intervals.
For each fit (as it can be seen in best fit fluxes pre-

sented in Table 3) the ratio of the two inputs is different
for the two hexose phosphate pools. The hkII is less
than hkI, and, in contrary, the contribution of fbpaseII
is higher than fbpaseI. This results in a different isoto-
pomer distribution in glycogen relative to the glucose in
the medium. Moreover, the reactions of the pentose
phosphate pathway that interchange various sugar

phosphates with fructose phosphates introduce addi-
tional differences to the isotopomer content between
glycogen and hexose phosphates fueling glycolysis.
Among the fluxes of pentose phosphate pathway, the

most essential are the exchange between triose and pen-
tose phosphates, and fructose and sedoheptulose phos-
phates. These exchanges also contribute to the
difference between isotopomer content of glycogen and
hexose phosphates fueling glycolysis.
Although model A was rejected, the fluxes corre-

sponding to the best fit in the presence of lactate are
shown in the last column of Table 3. They are different
from those computed with model B. This difference
shows the possible error in the results if the applied
model does not properly account for the compartmenta-
tion of metabolites.

Discussion
Possible sources of errors and the implemented way of
avoiding them
Stable isotope tracing is a promising sensitive technique
for the study of metabolism in living cells. However, it
is sensitive to various flaws and incompleteness in the
data analysis. That is why tools for tracer data analysis
must take into account the possible sources of errors. In
particular, omitting some isotope exchange reactions
may lead to significant errors in the calculated flux dis-
tributions [17]. The model used here simplifies some
sequential reactions of the pentose phosphate pathways,
TCA cycle, and glycolysis, which are grouped together.
However, all the possible splitting and re-formations of
carbon skeleton in the considered pathways are taken
into account [30,31]. This gives a confidence in avoiding
potential errors related with the simulation of incom-
plete set of fluxes.
Not accounting for compartmentation due to meta-

bolic channeling is another pitfall that can result in
incorrect estimation of metabolic fluxes [17]. Table 3
shows that model A, which does not account for chan-
neling, gives remarkably different results. However,
based on the current state of the art in fluxomics, it is
difficult to include into consideration all the possible
microcompartments a priori. Although there are studies
that confirm the associations of enzymes and channeling
[18-24], it is not clear how general the studied cases are
with regard to various organisms and tissues, and
whether the metabolite compartmentation studied in
vitro still persist in vivo. In modeling the metabolic net-
works, considering a single well mixed pool for each
metabolite still remains commonly accepted (e.g. [32]).
The method proposed here to determine metabolite
compartmentation from 13C distribution in metabolites
does not require specific experiments. Instead, it
requires a specific analysis related with the
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implementation of various schemes and application of
model discrimination analysis to define the compatibility
of the schemes with the data.

Experimental design facilitating the analysis
To restrict the possible ways of label propagation, the
experimental system was simplified to a maximum by
excluding the other sources of carbon except glucose or
lactate. This permitted us to find that measured isotopo-
logue distribution even in a small number of metabolites
limits the possible solutions sufficiently to reject the
hypothesis about unique well mixed pool of hexose
phosphates.
The more metabolites analyzed, the more information

about the topology of metabolic network they can
potentially bring. To extract such information much
more various hypothetic topologies must be analyzed.
As an introduction to the isotopomer-based analysis of
network topology, we presented a simple case of a few
metabolites. However, the commencement from small
dataset facilitates further extension of this method to
larger datasets, including those obtained with NMR or
MS [33-35].

Channeling from the point of view of limited diffusion
Although it is known that from the point of view of
13C distribution channeling can be simulated as an
additional compartment [14], this particular channeling
in glycogen synthesis was never considered before and
the presented work verified its consistency with experi-
mental data. The analysis of channeling was based on
the comparison of the models accounting for well-
mixed versus a compartmentalized pool of hexose
phosphates. The result of analysis was the rejection of
hypothesis suggesting well-mixed in favor of compart-
mentalized pool of hexose phosphates. To form a sepa-
rate pool of hexose phosphates and use it specifically
for glycogen synthesis, all the three enzymes, hexoki-
nase, phosphoglucomutase, and fructose bisphospha-
tase, must have access to it. This indicates that these
enzymes are spatially co-localized within the intracellu-
lar compartment secluded from the rest of the cytosol
by diffusion barriers. The indications that diffusion in
biological structures can be essentially limited appear
in various studies of cell physiology. The diffusion of
cAMP is possibly extremely restricted in the vicinity of
cyclic nucleotide-gated channels [36,37]. There are var-
ious indications that the diffusion of ATP is restricted
in the proximity of KATP channels [38-40] and in myo-
fibrils [41]. Probably, the kind of compartmentation
revealed here indicates the general situation in the cell:
diffusion is highly limited by the bodies of macromole-
cules, which serve as borders of microcompartments
for small metabolites.

Matching schemes to the types of isotopomer
distribution
The acceptance of model B does not mean that the set
of parameters and respective fluxes can be defined
unambiguously. The large confidence intervals for some
fluxes (shown in Table 3) specify an ensemble of sets of
metabolic fluxes that are consistent with the data. Such
a situation is quite normal in biological data analysis
[42-45], when models can make robust predictions with
regards to the behavior of the studied system (in our
case the distribution of isotopologues), but such predic-
tion remains valid for various sets of parameters (fluxes).
In such cases, either the topology of the model that is
consistent with the data, or the prediction of system
behavior for the accepted ensemble of parameter sets
(expected change of isotopologue distribution with a
change of conditions) can be the main result of the use
of the model. In this way the analysis consists in map-
ping between the schemes of metabolism and specific
distributions of isotopomers.

Change of hepatocyte metabolism in the presence of
lactate
Despite the large confidence intervals, the change of
metabolic state in the presence of lactate is evident.
Most of the metabolic fluxes increased so much that
confidence intervals for them do not overlap with those
found for glucose as the only substrate. Lactate induced
the substantial increase of metabolite recycling. This
result of modeling, in principle, agrees with the direct
observation, that an essential amount of label from lac-
tate ascends up to medium glucose, and an essential
amount of label from glucose descends down to lactate.
It is in accordance with the function of the liver, which
can utilize lactate to synthesize glucose.
However, quantitatively, some of the results are not so

evident. Table 3 shows that the recycling in upper glyco-
lysis (between glucose and hexose-6-phosphates)
increases several orders of magnitude in the presence of
lactate. This recycling brings isotope composition of
hexose-6-phosphates formed by gluconeogenesis into
the pool of glucose, and vice versa, provides glucose iso-
topomer composition for the pool of hexose-6-phos-
phates, which are further split to trioses. Indeed, c2

criterion is very sensitive to the value of such recycling:
its two-fold decrease leads to the c2 increase from 36.1
to 46.6 (data not shown), which indicates that the flux
that decreased twice was out of 99.9% confidence inter-
val for this recycling. The high velocity of this futile
cycle results in the high rate of ATP consumption.
However, it agrees in the order of magnitude with ATP
production, taking into account that the flux through
TCA cycle produces five folds more NADH (15 folds
more ATP).

Marin de Mas et al. BMC Systems Biology 2011, 5:175
http://www.biomedcentral.com/1752-0509/5/175

Page 8 of 14



The net glucose consumed as well as lactate produced
are burned through the TCA cycle thus producing
energy necessary for the recycling. Thus, in the presence
of only glucose, its essential part is used to replenish
glycogen, whereas in the presence of both glucose and
lactate the cultured liver cells apparently burns these
substrates (preferentially lactate).
The presented analysis of the entire set of experiments

characterized the capacity of hepatocytes to modify
metabolic state under extreme conditions. The charac-
terization of metabolism of hepatocytes is inseparable
from the detection of the real compartmentation of con-
sidered pathways. Application of this methodology to
larger datasets will reveal new information about the
network topology. It opens a perspective to examine the
compartmentation and metabolic flux profile in various
cells under physiological and patho-physiological
conditions.

Conclusions
Compartmentation of intracellular metabolism, appeared
as a general phenomenon, results that the analysis of
metabolic flux distribution should be inseparable from
the analysis of compartmental structure of studied path-
ways. Here we proposed a methodology implemented in
our software to reveal compartmental structure and
metabolic flux distribution from the distribution of 13C
isotopomers measured in the products of cells incubated
with 13C labeled substrates. This methodology is based
on varying the schemes for simulation of measured data
and applying the model discrimination analysis. The
application of this methodology to the analysis of 13C
isotopomer distributions measured in metabolites of iso-
lated liver cells revealed a separate compartment of hex-
ose phosphates related with substrate channeling in
glycogen metabolism. This analysis provided the distri-
bution of metabolic fluxes in central carbohydrate meta-
bolism of the cells incubated with 13C labeled glucose,
and revealed the changes of fluxes that were induced by
addition of lactate in the incubation media.

Methods
To analyze cellular metabolic flux profiles for specific
conditions in situ and various schemes of metabolic
reactions we used the software tool “Isodyn” (from “iso-
topomer dynamics”) [11,12]. It simulates isotopomer
distributions in the same way as classical kinetic models
simulate the time-course of metabolite concentrations.

Models and data fitting
The systems of differential equations corresponding to
the schemes presented in Figure 1 and expressions for
the rates of individual reactions are given in Additional
File 1. The metabolite fluxes and concentrations were

obtained as a numerical solution of the differential equa-
tions using the BDF method implemented in our soft-
ware Isodyn. The software then uses these values of
total concentrations and fluxes to construct and solve
differential equations for all isotopomers of metabolites
presented in Figure 1. The algorithms for constructing
equations for isotopomers are described elsewhere
[11,12].
The concentrations of isotopologues needed to be

compared with experimental data were calculated as a
sum of the respective isotopomer concentrations com-
puted by Isodyn. Fitting of the experimental data was
performed by minimizing c2, the square of deviations
between measured isotopologue fractions (yi) and values
(y(xi, a)) computed for the set of parameters, a, as frac-
tions of isotopologues xi, normalized by experimental
standard deviations (si):

χ2 =
N∑

i=1

[
yi − y(xi; a)

σi
]
2

The minimization was performed in the global space
of parameters using our implementation of simulated
annealing algorithm supplemented by coordinate des-
cent in local area [5]. The sets of parameters, thus opti-
mized, defined the sets of metabolic fluxes resulting in
simulated isotopologue distributions and the value of c2.
Multiple application of the optimization resulted in mul-
tiple sets of fluxes characterized by different values of
c2. Application of c2 threshold to the obtained sets of
fluxes [29] defined confidence intervals for the meta-
bolic fluxes. The implementation of this procedure in
Isodyn was described elsewhere [5].

Modification of reaction scheme
A change of equations of the basic kinetic model could
be usually performed easily, even graphically: there are
algorithms that transform a drawn scheme into a system
of ordinary differential equations (ODE) [46]. However,
in the case of Isodyn the removal or addition of reac-
tions in the basic kinetic model must be followed by the
respective changes in calculation of the isotopomer dis-
tribution. The consistent change of both the modules
(basic kinetic model and calculation of respective isoto-
pomer distributions) was performed automatically and
the sources of respective programs are available for free
at http://www.bq.ub.es/bioqint/label_distribution/tutor-
ial.tar.gz..

Aldolase reaction
An essential restriction, which helps to distinguish
between models, is including the interdependency of
fluxes catalyzed by the same enzyme, as we have shown
for transketolase and transaldolase [12]. Here, similar
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interdependency of various isotope-exchange fluxes is
considered for the aldolase-catalyzed reaction [30],
which normally are not included in classical kinetic
models.
The scheme in Figure 2 shows the possible isotope-

exchange fluxes in the aldolase reaction, accounted for
in the model. The flux, shown in Figure 2A with green
lines, transforms the whole molecule of fbp in the pool
of trioses. It constitutes only a part of the flux v3,
because another part of v3 produces dhap originated not
from fbp, but from the same pool of trioses, bound to
the enzyme through the reaction v-3. The steady state
fraction of v3 that produces dhap originated from fbp
(that equals to the fraction of bound dhap originated
from fbp (PfE-dhap)) can be expressed as the ratio of
input of molecules originated from fbp to the total
input in E-dhap:

Pf
E−dhap =

v2.Pf
E−fbp

v2 + v−3

(1)

Here PfE-fbp is the fraction of v2, which brings the car-
bons originated from fbp to E-dhap (or the fraction of
bound fbp originated from fbp). Another fraction of v2,
(1-PfE-fbp) brings carbons originated from triose pool,
which were bound through reactions v-3 and v-2. PfE-fbp,

in turn, can be expressed as the ratio of input of mole-
cules originated from fbp to total input in E-fbp:

Pf
E−fbp =

v−2.Pf
E−dhap + v1

v1 + v−2

(2)

The solution of equations (1) and (2) is

Pf
E−dhap =

v2.v1

v2.v1 + v−3.v1 + v−3.v−2
(3)

where the rates vi could be expressed through the rate
constants and substrate concentrations. The forward
flux through the whole cycle (indicated by green lines in
Figure 2A) is

vf = Pf
E−dhap.v3 =

v1.v2.v3

v2.v1 + v−3.v1 + v−3.v−2
(4)

The reverse flux of fbp formation (red lines in Figure
2A) from triose phosphates (PtE-fbp ) could be described
similar to (4):

vr = Pt
E−fbp.v−1 =

v−1.v−2.v−3

v2.v1 + v−3.v1 + v−3.v−2
(5)

Figure 2B shows two additional fluxes, which only
exchange half a molecule of fbp with g3p pool. As in

Figure 2 Isotope-exchange fluxes in the aldolase-catalysed reaction. (A) shows the whole reaction cycle when the enzyme (E) forms a
complex with fbp (E-fbp), releases g3p keeping dhap (E-dhap), and finally releases dhap returning to (E). Forward flux (green lines) through the
whole reaction cycle brings isotopes originated from the fbp pool into the pools of dhap and g3p, and reverse flux (red lines) brings isotopes
originated from the pools of dhap and g3p into fbp pool. (B) shows forward (green lines) and reverse (red lines) fluxes that only exchange
isotopes of upper part of fbp molecule with g3p pool without releasing dhap. vi designate the respective rates of elementary steps of reaction
mechanism.
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the cases described above, the fraction of the first three
carbons originated from fbp (PfgE-dhap) in (E-fbp) is:

Pfg
E−fbp =

v1

v1 + v−2
(6)

and the forward (thin black in Figure 2B) flux:

vfg =
v1.v2

v1 + v−2
(7)

The flux in the opposite direction (indicated by thick
gray lines) is described likewise.
Thus, the model accounts for three isotope-exchange

fluxes related with aldolase activity: forward and reverse
flux through the whole cycle of enzyme reaction, and
pure isotope exchange flux between f6p and g3p, with-
out the change of total concentrations of these metabo-
lites. They are not used in classical kinetic simulations,
where only the net flux is important, but they are neces-
sary for the subsequent simulation of isotopologue dis-
tribution. The isotope-exchange fluxes of transketolase
and transaldolase were implemented similarly as
described elsewhere [12].

c2 criterion for the acceptance or rejection of model
To analyze the structure of metabolic networks, model
discrimination analysis was used to test various kinetic
models of the same pathways and reject the ones incon-
sistent with experimental data. Isodyn implements cri-
teria for acceptance or rejection of a model based on
the values of normalized square of difference between
experimental data and simulation (c2) and numbers of
degrees of freedom [29].
The fitting algorithm implemented in Isodyn identifies

the global minimum for the function c2 and the respec-
tive set of parameters and fluxes. If the model is accep-
table, the estimated fluxes are also acceptable as a
model prediction. The value of c2 is used in Isodyn as a
criterion for acceptance or rejection of model as it is
described in [29]. The probability that a model with F
degrees of freedom is correct and c2 by chance could
exceed a determined value, is given as an incomplete
gamma function (Q(a,x), where a = F/2 (F is the number
of degrees of freedom), and x = c2/2):

Q(a, x) =
1

Γ (a)

x∫

0

e−tta−1dt (8)

Here Γ(a) is gamma function:

Γ (z) =
∫

tz−1e−tdt (9)

The model is acceptable if Q value is larger than 0.05.
It can be acceptable even with Q value larger than
0.001, if the errors are not normal or have been moder-
ately underestimated. But if the Q value is lower than
0.001, the model must be rejected as inconsistent with
experimental data.

Estimation of number of degrees of freedom
Formally, the number of degrees of freedom (F) is calcu-
lated as the difference between number of data points
(N, which in our case is the number of fractions of iso-
topologues for all measured metabolites and total meta-
bolite concentrations) and parameters (P) in the model:

F = N − P (10)

However, in the case if the model is underdetermined,
it could happen that the fit of the given data is insensi-
tive to some parameters or there are ambiguous combi-
nations equally affecting the fit, so that the parameters
could not be distinguished. The presence of such para-
meters does not improve the fit and thus do not
decrease the number of degrees of freedom. Both situa-
tions result in the fact that the Hessian matrix (the
matrix of second derivatives of objective function c2

with respect to [αkl] = [
∂2χ2

∂ak∂al
] sparameters,) is singu-

lar, or numerically close to singularity. In such situations
the real number of degrees of freedom is higher than
the formal difference (10). The maximal set of para-
meters that could be defined by the given experimental
data could be estimated based on the analysis of Hessian
matrix.
This matrix is calculated as follows. First derivative of

c2 with respect to the parameters is:

∂χ2

∂αk
= −2

N∑
i=1

[yi − y(xi; a)]

σ 2
i

∂y(xi; a)
∂αk

(11)

where k = 1,2,...M (number of parameters)
Differentiation of these functions gives

∂2χ2

∂αk∂αl
= −2

N∑
i=1

1

σ 2
i

[
a − b

]
(12)

Where:

a =
∂y(xi; a)

∂αk

∂y(xi; a)
∂αl

b = [yi − y(xi; a)]
∂2y(xi; a)
∂αk∂αl
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The second term under the sum, which contains the
second derivative of fitting function y(xi,a) is usually
ignored [27]:

αkl = −2
N∑

i=1

1

σ 2
i

[
∂y(xi; a)

∂ak

∂y(xi; a)
∂al

] (13)

As it is indicated above, the singularity of this matrix
means that some parameters of the model could not be
defined in principle, given the specific dataset analyzed.
To find out what characteristics of the studied system
(parameters of the model) could be revealed, given the
model and a specific dataset, the standard procedure of
singular value decomposition of Hessian matrix was
used [29].
Following this standard routine the Hessian matrix A

is decomposed to the product of orthogonal matrix U,
the vector (or diagonal matrix) of singular values W,
and the orthogonal matrix V. The ratio of maximal and
minimal values in the vector W, called condition num-
ber, characterizes the singularity of A. If some values of
W are zeros, matrix A is strictly singular, but it could
be numerically close to singularity, or ill-conditioned, if
the condition number is close to machine precision.
The covariance matrix C = A-1 was found from singular
value decomposition as C = (V·W-1·UT), where W-1 =
[diag(1/wi)]. Diagonal elements of C are the variances of
parameters and the other elements are covariances. If
matrix A is ill-conditioned, its inverse C cannot be
defined and the failure of finding the inverse indicates
that the number of parameters is excessive.
Isodyn finds the maximal set of parameters of the

model, which, being considered as a subject for fitting,
give a non-singular Hessian matrix. The size of this set
could be considered as the number of parameters,
which affects the number of degrees of freedom in the
model with regard to given experimental data. If in fact
the model has more parameters, the other parameters
are not distinguishable by the given experimental data
and must be considered as constants. The number of
degrees of freedom (F) is defined as a difference
between the numbers of experimental data and effective
model parameters, and the value of incomplete gamma
function Q(F/2, c2/2), defined as described in [29], indi-
cates the acceptance of the model.

Experimental methods
Materials
[1,2-13C2]D-glucose (> 99% enriched) and [U-13C3]L-lac-
tate (> 99% enriched) were purchased from Isotec (Mia-
misburg, OH), and other reagents from Sigma-Aldrich
Company (St. Louis, MO).

Animals
180-200 g male Wistar rats were used. They were main-
tained in a 12h:12h light-dark cycle with free access to
standard laboratory rat chow pellets (Panlab) and water.
Animals were deprived of food 24 hours prior to hepa-
tocyte isolation. Experiments were conducted according
to guidelines accepted by the University Animal Care
and Use Committee. Appropiate measures were taken to
minimize pain or discomfort of animals.

Preparation of cells and incubation
Suspensions of isolated parenchymal liver cells were pre-
pared from 24-h starved animals as previously described
[47]. Cells were resuspended in Krebs-Ringer bicarbo-
nate buffer, pH 7.4. Preparations with viability below
90%, established by the trypan blue exclusion method,
were not used. Samples (6 ml) of these suspensions,
containing 2.3 × 106 cells/ml, were incubated at 37°C
with gassing and continuous shaking (160 strokes/min,
which is the minimum shaking that assures total sus-
pension of cells) for 2 h, as it is the optimum time to
ensure maximum glycogen synthesis without diminish-
ing cell viability. Conditions for cell incubation were: a)
20 mM glucose, with glucose enriched 50% in [1,2-
13C2]-glucose, b) 20 mM glucose + 9 mM lactate + 1
mM pyruvate (10 mM lactate/pyruvate (9:1)), with glu-
cose enriched 50% in [1,2-13C2]-glucose and c) 20 mM
glucose + 10 mM lactate/pyruvate (9:1), with lactate
enriched 50% in [U-13C3]-lactate.

Measurement of metabolites
At the beginning and end of incubations, cells were cen-
trifuged (3000 g, 20 s), and incubation medium and cell
pellets were obtained. For glycogen determination, cell
pellets were immediately homogenized with 30% (w/v)
KOH using a modification of Chan et al. methodology
[48], where we have used 3 mM paper to precipitate gly-
cogen. Glucose and lactate incubation medium concen-
trations were determined using spectrophotometric
methods as described in [49,50].

Gas Chromatography/Mass Spectrometry sample
processing and analysis
At the end of incubations, cells were centrifuged so
that the incubation medium and cell pellet are sepa-
rated and everything was frozen in liquid nitrogen
and stored at -80°C until processing for GC/MS ana-
lysis. Incubation media were processed for isolation of
lactate, glucose, and glutamate using previously estab-
lished methods [51,52]. Glycogen was isolated from
cell pellets after ethanol precipitation of glycogen
over 3 mM paper, and then treated with
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amyloglucosidase, and the hydrolyzed glucose was iso-
lated using ion exchange chromatography [6]. Imme-
diately after that, glucose from the medium or from
hydrolyzed glycogen, as well as lactate and glutamate
were derivatized for GC/MS analysis [51,53,54]. A
mass selective detector HP 5973 equipment coupled
to a gas chromatograph HP 6890 was used for all the
metabolites as described elsewhere [51,53,54]. Chemi-
cal ionization was used to give the molecular ion (C1-
C6) of the glycogen or medium glucose molecules at
m/z 328, and the same for the lactate molecule (C1-
C3) at m/z 328. Electron impact ionization was used
to characterize isotopologues of C1-C4 (m/z 242) and
C3-C6 (m/z 187) glycogen glucose fragments, as well
as C2-C4 (m/z 152) and C2-C5 (m/z 198) glutamate
fragments.
Results of the mass isotopologues in glucose, lactate

and glutamate are reported as molar fractions of m0,
m1, m2, etc, where m0, m1, m2... indicate the number
of 13C atoms in the molecule [55]. The data for each
independent experiment obtained after subtraction of
natural 13C isotope enrichment are presented in Addi-
tional File 2.

Additional material

Additional file 1: Differential equations of the used kinetic models.
Kinetic models were used to simulate the total fluxes and concentrations
of metabolites. Based on these calculated total values Isodyn further
simulates the distribution of isotopic isomers.

Additional file 2: Measured distributions of 13C isotopomers in
metabolites. The table presents the data for each independent
experiment obtained as described in Methods after subtraction natural
13C isotope enrichment.
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