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Abstract

Background: The understanding of regulatory and signaling networks has long been a core
objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature,
which allows the construction of Boolean models, where the state of a component is either ‘off’ or
‘on’. While often able to capture the essential behavior of a network, these models can never
reproduce detailed time courses of concentration levels.

Nowadays however, experiments yield more and more quantitative data. An obvious question
therefore is how qualitative models can be used to explain and predict the outcome of these
experiments.

Results: In this contribution we present a canonical way of transforming Boolean into continuous
models, where the use of multivariate polynomial interpolation allows transformation of logic
operations into a system of ordinary differential equations (ODE). The method is standardized and
can readily be applied to large networks. Other, more limited approaches to this task are briefly
reviewed and compared. Moreover, we discuss and generalize existing theoretical results on the
relation between Boolean and continuous models. As a test case a logical model is transformed into
an extensive continuous ODE model describing the activation of T-cells. We discuss how
parameters for this model can be determined such that quantitative experimental results are
explained and predicted, including time-courses for multiple ligand concentrations and binding
affinities of different ligands. This shows that from the continuous model we may obtain biological
insights not evident from the discrete one.

Conclusion: The presented approach will facilitate the interaction between modeling and
experiments. Moreover, it provides a straightforward way to apply quantitative analysis methods to
qualitatively described systems.

Page 1 of 21
(page number not for citation purposes)

BioMed Central

Open Access

mailto:dominik.wittmann@helmholtz-muenchen.de
mailto:jan.krumsiek@helmholtz-muenchen.de
mailto:julio@hms.harvard.edu
mailto:lauffen@mit.edu
mailto:klamt@mpi-magdeburg.mpg.de
mailto:fabian.theis@helmholtz-muenchen.de
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Background
Close interaction between experiments and mathemati-
cal models has proven to be a powerful research
approach in Systems Biology. Especially the modeling
of regulatory and signaling networks, however, is
typically hampered by a lack of information about
mechanistic details, as often one can only determine the
interactions of the involved species in a qualitative way.
The current shift of focus in Systems Biology from single
signal transduction pathways to networks of pathways
exacerbates this lack of information even more. There-
fore, the creation of mass action based models that
accurately describe the underlying biochemistry is
typically restricted to small well-studied subsystems.

Large-scale models of regulatory or signaling networks
are often so-called Boolean models [1]. In fact, these
models can be seen as the mathematically rigorous
representation of qualitative biological knowledge. Their
components, henceforth called species, can have only
discrete states, typically two; these may be referred to as 0
and 1, ‘off’ and ‘on’, ‘deactivated’ and ‘activated’, etc.
Time is discretized and the state of a species at time t + 1
is a function of the states of the species at time t.
Although being a crude simplification of biological
reality, Boolean models are often able to reproduce the
qualitative behavior of a system [2-8]. Naturally,
Boolean models can neither describe continuous con-
centration levels nor realistic time scales. For this reason,
they cannot be used to explain and predict the outcome
of biological experiments that yield quantitative data.
However, with increasing emphasis on these quantitative
experiments the need for precisely this kind of model
arises. In this contribution, we present and exemplify a
practicable solution to this problem: a standardized
method for accurately converting any Boolean model
into a continuous model. This transformation fills the
gap in the modeling process shown in Figure 1. It allows
construction of a continuous model from qualitative
knowledge by representing this knowledge as a Boolean
model and then transforming this discrete model into a
continuous one. The continuous model can now be used
to explain experimental results and to design and
optimize further experiments. The results of these
experiments, in turn, help to refine the model.

Boolean models are a very coarse description of
biochemical processes. They phenomenologically
describe observed dependencies often leaving out still
unknown players or intermediate steps. As our transfor-
mation requires no additional information the resulting
continuous models are, of course, still phenomenologi-
cal models. We can automatically create these contin-
uous phenomenological models out of a Boolean

model, but we cannot create a mass action law without
additional knowledge on the biochemistry. Our method
is a top-down approach for (large) networks with
incomplete mechanistic knowledge — derived e.g. from
pathway databases — where predictive kinetic modeling
is infeasible. The main point that we want to make in
this contribution is that also these phenomenological
models can be used in Systems Biology to explain and
predict quantitative experimental results.

To this end, we focus on a large Boolean model of T-cell
activation proposed by Klamt et al. [6]. These cells play a
pivotal role in the immune system. When foreign
antigens bind to their receptors, signaling cascades are
triggered within the T-cell leading to an activation of
several transcription factors. The logical structure of the
model is shown in Figure 2A. There are three inputs: the
T-cell receptor TCR, the coreceptor CD4 and an input for
CD45; as well as four outputs: the transcription factors
CRE, AP1, NFkB and NFAT. The rephosphorylation of
PAG-Csk by Fyn and cCbl mediated degradation are
known to be slow processes compared to the other
interactions. This is modeled by activating the feedback
loops Fyn Æ PAG-Csk and ZAP-70 Æ cCbl only at a later
stage. Therefore three scenarios are defined:

scenario 1, resting state: All inputs are set to 0, feedback
loops are deactivated.

scenario 2, early events: Inputs are set to 1, feedback
loops are still deactivated.

Figure 1
Overview of the modeling process. The typically
qualitative biological knowledge is mathematically rigorously
represented as a Boolean model, that is then converted into
a continuous model. This continuous model can be used to
explain quantitative experimental results and to design and
optimize further experiments; the results of these
experiments, in turn, help to refine the model.
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scenario 3, mid-time events: Inputs are still 1, feedback
loops are active.

A qualitative analysis of an expanded version of this
Boolean model by Saez-Rodriguez et al. [8] yielded new
and non-obvious signaling pathways. There are also
quantitative models covering aspects of T-cell signaling
in mechanistic detail, e.g. [9]. In contrast thereto, the
continuous model we obtain in the following describes
the T-cell signaling cascade on a larger scale yet in less
mechanistic detail.

We apply the transformation method to the T-cell
model. The resulting continuous model is able to fully

reproduce the behavior of the Boolean model. Moreover,
we show that it can easily include and deal with the
different time scales of interactions in the three
scenarios. Hence the continuous model is indeed a
generalization of the Boolean model with richer
dynamic properties. This is in line with previous findings
[10,11], indicating that the qualitative behavior of a
discrete model is reproduced by its continuous homo-
logue. We can further corroborate this hypothesis by
generalizing existing theoretical results on the steady-
states of discrete and continuous models.

The crucial question is, of course, whether the contin-
uous model derived from a Boolean network is indeed

Figure 2
T-cell model. (A) Structure of the Boolean model as shown in CellNetAnalyzer [24]. (B) Hill functions with parameter n = 3
and different thresholds k = 0.3, kfast = 0.1 and kslow = 0.8. (C) Subnet of the T-cell model for scenario 2 (only activation)
and scenario 3 (activation and feedback). (D) Numeric simulation of the subnet from (C). Time is plotted on a log-scale.
The two dotted vertical lines indicate the time points when the concentration of ZAP-70 exceeds kfast and kslow, respectively.
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competent to explain an aspect of biological reality in a
precise quantitative fashion. We answer this question in
the affirmative by showing that our T-cell model
reproduces time courses of concentration levels mea-
sured for three different ligand concentrations [12].
Moreover, it is able to predict binding affinities of
different ligands from their induced signaling profiles.
The fact that the model can differentiate between more
than two different concentrations shows that we have
definitely left the Boolean (binary) world behind.

Results
Representation of Boolean functions and models
A Boolean model consists of

• N species X1, X2, ...., XN, e.g. genes, proteins, etc.,
each represented by a variable xi taking values in
{0, 1},
• f o r e a ch spe c i e s X i a s e t o f spe c i e s
R X X X X X Xi i i iN Ni

: { , ,..., } { , ,..., }= ⊂1 2 1 2 that influ-
ence xi and
• for each species Xi an update function

Bi
Ni: { , } { , }0 1 0 1→

giving the value of xi at the next time step for every
possible combination of ( , ,..., ) { , }x x xi i iN
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This is a so-called sum-of-product representation of Bi.
These representations are especially convenient, as they
allow to graphically represent our models using interac-
tion hypergraphs [6]. The idea is to represent each product
(AND gate) in the sum-of-product form of Bi by a
directed hyperedge between a set of start nodes
S X X Xi i iNi
⊂ { , , }1 2 and the end node Xi. Each pair

(s, Xi), s Œ S, carries a sign — ‘+’ or ‘-’ — depending on
whether there is a factor s or ¬s in the product. All
incoming hyperedges at node Xi are then a graphical

representation of Bi. This is further illustrated in
Additional data file 1.

The general approach to making discrete
models continuous
The first step for obtaining a continuous model from a
Boolean one is to replace the discrete variables xi by
continuous variables xi taking values in [0, 1], i.e. we
normalize concentrations to the unit interval. Conse-
quently, we have to ‘extend’ the functions Bi to functions
Bi : [0, 1]

N Æ [0, 1]. We call the functions Bi continuous
homologues of the Boolean functions Bi. The crucial point
is, how the transformation of a Boolean function into a
continuous homologue is performed. We will address
this issue in the next section and continue with the
outline of the general approach.

In the second step we have to specify how to build the
actual continuous model, for which there are two
possibilities. The most straightforward is probably to
proceed analogously to the Boolean model, i.e. to use
discrete time steps and to compute the value of xi at
time t + 1 by

x t B x t x t x ti i i i iNi
( ) ( ( ), ( ),..., ( )).+ =1 1 2 (1)

In numeric simulations the discretization of time is
obviously irrelevant. It complicates, however, the detec-
tion of small-scale continuous effects and is a serious
drawback in the further investigation of the model by
analytical methods.

Another way to build the continuous model is to try to
mimic biological reality more closely: mRNAs, proteins,
etc. are produced at a certain rate and are at the same
time degraded. We assume the production of Xi to be
given by Bi , and the degradation to be proportional to
xi . Then the development of xi over time is governed by
the ordinary differential equation (ODE)

&x
i

B x x x xi i i i iN ii
= −1

1 2t
( ( , ,..., ) ), (2)

where τi can be interpreted as the life-time of species Xi.
Note that due to the normalization of concentrations to
the unit interval we have only one parameter for
production as well as decay. To clarify this, assume
that %xi denotes the non-normalized concentrations and
0 11 2≤ ≤% % % %B x x xi i i iNi

( , ,..., ) the corresponding production
functions. Then a general system of ODEs is of the form
& % % % % %x B x x x xi i i i i iN i ii
= −a g( , ,..., )1 2 , where ai is the produc-

tion rate and gi the decay rate of species Xi. Since the
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maximal concentration of Xi is ai/gi we have the relation
x xi i i i= ( / )g a % . It now follows that
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a n d b y s e t t i n g τ i = 1 / g i a n d
B x x B x xi i iN i i i i iN iN iNi i i i

( ,..., ) (( / ) ,...,( / )1 1 1 1= % a g a g we
obtain the ODEs (2).

Herein we focus on model (2), as this model can be
further analyzed using the rich and mathematically
rigorous theory of ODEs. Note furthermore that model
(1) can be considered a special case of model (2) after
numeric integration.

Continuous homologues of Boolean functions
As already mentioned, the key point is how a continuous
homologue Bi can be obtained from a Boolean function
Bi in a computationally efficient manner. A suitable
transformation has to satisfy three conditions:

Accuracy: It has to be accurate, which means that Bi and Bi
must agree on the vertices of the unit cube, i.e. for values in
{ , }0 1 Ni . Functions Bi satisfying this condition are called
perfect continuous homologues. As will be shown, for
perfect continuous homologues discrete and continuous
models exhibit a similar steady-state behavior.

Good analytical properties: The functions Bi should
have good analytical properties such as smoothness in
order to allow and facilitate a mathematical analysis of
the system of ODEs.

Minimality and uniqueness: The functions Bi should be
the unique minimal solution in their interpolation class.

The three transformations we propose in the following are
all based on multivariate polynomial interpolation
[13,14] (see Methods). Here Bi is defined as a poly-
nomial in the variables x x xi i iNi1 2, ,..., that agrees with Bi
on the vertices of the unit cube. As will be shown in the
Methods section, this technique satisfies all three of the
above requirements. There are other approaches which we
shortly review and compare in the Discussion section.

BooleCube
In a first step, we define the functions

B x x xi i i iNi

I( , , ..., )1 2 (3)

by linearly interpolating the functions Bi using the
technique of multivariate polynomial interpolation as
explained in the Methods section. These functions are
called BooleCubes. By substituting Bi

I for Bi in equation
(2), we can then define a system of ODEs that describes
the temporal development of the xi .

HillCube
The functions Bi

I are affine multilinear, i.e. for each 1 ≤ j
≤ Ni and fixed xik , k ≠ j, there exist constants a, b Œ R

such that B x x x a bxi i i iN iji

I( , , ..., )1 2 = + . Molecular inter-
actions, however, are known to show a switch-like
behavior, which can be modeled using sigmoid shaped
Hill functions f x x x kn n n( ) /( )= + [15] (see Additional
data file 2). The two parameters n and k have a clear
biological meaning. The Hill coefficient n determines the
slope of the curve and is a measure of the cooperativity
of the interaction. The parameter k corresponds to the
threshold in the Boolean model, above which one
defines the state of a species as ‘on’. Mathematically
speaking, it is the value at which the activation is half
maximal.

We now define a Hill function fij with parameters nij and
kij for every interaction and define new functions

B x x x B f x f x f xi i i iN i i i i i iN iNi i i

H I( , ,..., ) : ( ( ), ( ),..., (1 2 1 1 2 2= ))),

(4)

which we call HillCubes. Plots of the HillCubes of all 16
two-variable Boolean gates can be found in Additional
data file 3. Now a new system of ODEs can be defined by
replacing the Bi in equation (2) by the HillCubes Bi

H .

normalized HillCube
Note that Hill functions never assume the value 1, but
approach it asymptotically. Hence, the HillCubes are not
perfect homologues of the Boolean update functions Bi.
If this is desired a simple solution is to normalize the
Hill functions to the unit interval. This yields another
(perfect) continuous homologue of the

Boolean functions Bi

B x x x B
fi xi
fi
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i i i iN ii
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which we call normalized HillCubes, and thus defines also
a new continuous ODE model.
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Theoretical results about the relation between
discrete and continuous models
A natural and interesting question is how similar the
discrete and the continuous model are. It can easily be
shown (see Methods and [11]) that, whenever the Bi in
equation (2) are perfect homologues of the Boolean
update functions Bi, a steady-state of the Boolean model
will also be a steady-state of the continuous system.
This result can be applied to the BooleCube model as
well as the normalized HillCube model, but not to the
non-normalized HillCube model. Therefore, Boolean
steady-states will in general not be steady-states of the
non-normalized HillCube system. The question is if
Boolean steady-states still correspond to ‘similar’ steady-
states of this continuous model, at least for certain
parameters. Using the implicit function theorem we were
able to show that this is indeed the case (see Methods).
The reverse statement is, of course, not true, as in the
continuous model additional (stable) steady-states may
arise. Besides the steady-state behavior, monotony
properties are a further important characteristic of a
dynamical system. These properties determine the effect
of a down- or up-regulation of a certain species on
the other species. Due to its accuracy the presented
transformation method preserves the monotony proper-
ties of a Boolean network. In the Discussion section we
illustrate this further using the T-cell model as an
example.

We show these results as they justify our transformation
approach by demonstrating that it preserves essential
properties of the Boolean model. For a deeper mathe-
matical investigation of the relation between discrete
and continuous models we refer the interested reader to
the rich literature on this subject, e.g. [11,16,17]

Simulation of the Boolean T-cell model
Figure 3A shows a simulation of the Boolean T-cell
model using synchronous updates. In the beginning the
three inputs were 0 and the system was in its resting state
(scenario 1). At t = 10 the inputs were manually switched
on and the signaling cascade was triggered off, which at
t = 24 led to the activation of all four transcription
factors CRE, AP1, NFkB and NFAT (scenario 2). At t = 57
we activated the feedback loops Fyn Æ PAG-Csk and
ZAP-70 Æ cCbl. Consequently the cascade was blocked
and at t = 67 all transcription factors were again
deactivated. So, essentially the simulation used three
different Boolean models at times [0, 10), [10, 57) and
[57, 100]. Note that in the Boolean model the time point
for the activation of the feedback loops could be chosen
arbitrarily. As is explained below, in the continuous
model this time point was determined by our choice of
the kinetic parameters. We chose t = 57 since then

deactivation of all transcription factors occurred at
around the same time point in both models.

After deactivation oscillations occurred, artefacts of the
synchronous updating. When the species were updated
asynchronously according to some permutation, these
oscillations could be observed for 3078 out of 10000
randomly sampled permutations; in the other cases a
steady-state was reached.

Continuous T-cell model
We applied the transformation technique to the Boolean
T-cell model. Using non-normalized HillCubes we
obtained a large quantitative model of T-cell activation
(see Methods). In a first step, we manually determined
approximate parameters for which the continuous
model reproduces the behavior of the Boolean model
during all three scenarios. The information about fast
and slow interactions was thereby encoded in the values
of specific parameters. Consequently, the continuous
model was able to explain both, the activation as well as
the deactivation of T-cells, without any alteration of the
network topology between different scenarios. Note that
this was necessary in the Boolean case. We set all Hill
coefficients to n = 3, the thresholds to k = 0.3 and the
life-times to τ = 1, with the exception of Fyn and ZAP-70.
Here we knew that the interactions Fyn Æ PAG-Csk and
ZAP-70 Æ cCbl operate on a slower time scale. Therefore
the thresholds for these interactions were set to kslow =
0.8 whereas the thresholds for the interactions Fyn Æ
TCR-phos, ZAP-70 Æ LAT-phosp, ZAP-70 Æ PLCg (act)
and ZAP-70 Æ Itk were set to kfast = 0.1. The Hill
functions for the three thresholds k, kslow and kfast are
displayed in Figure 2B. Finally, we set the life-times of
Fyn and ZAP-70 to τFyn = τZAP-70 = 10 to enlarge the time
gap between the two switching points.

The numeric simulation of the continuous T-cell model
with the manually determined parameters is shown in
Figure 3B. At first, the cell was again in its resting state
with all three inputs turned off. Then at t = 10 we
manually switched on all inputs and the signaling
cascade was triggered off showing an expression profile
very similar to the Boolean simulation (Figure 3A). We
observed a total activation of the four transcription
factors at around t = 21 just like in the Boolean
simulation. One can clearly see that Fyn and ZAP-70
were activated more slowly. Nonetheless TCR-phos, LAT-
phosp, PLCg (act) and Itk were instantly turned on due
to the low threshold kfast. Only when at around t = 25 the
concentrations of Fyn and ZAP-70 were high enough, the
feedback loops Fyn Æ PAG-Csk and ZAP-70 Æ cCbl
became active and began to switch on PAG-Csk and
cCbl. While PAG-Csk reached a constant medium
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expression level, cCbl was only weakly and transiently
expressed. This, however, sufficed to switch off the
cascade and ultimately at around t = 67 all transcription
factors were again deactivated. In contrast to the Boolean
model, the continuous model did not exhibit an
oscillatory behavior but reached a steady-state after
deactivation of the signaling cascade. The species with
long expression periods in the Boolean oscillation (Tcr

bind, PAG Csk, Fyn, TCR phos and IkB) were expressed
at high or medium levels whereas the species with short
expression periods were not expressed at all.

Comparison of the discrete and the continuous
T-cell model
Although one can argue that there is no real time scale in
Boolean networks, we compared both models by

Figure 3
Results from the Boolean and continuous simulations of the T-cell model using the manually determined
parameter set. The vertical dashed lines in (A, B, F) mark (from left to right): the switching on of the inputs, the total
activation of the transcription factors, the activation of the feedback loops and the total deactivation of the transcription
factors. (A) Boolean simulation using synchronous updates. (B) Continuous simulation using HillCubes. (C) Upper figure:
difference between the time course from (A) and the time course from (B). Lower figure: correlation between the discrete
and the continuous expression pattern of the lower 29 species at each time point 0 <t < 100. The curve was smoothened using
a moving-average filter with 5 time-units window length. (D) Ratio of activation and deactivation time, r, for τFyn = τZAP-70 = 1,
2, ..., 20. Other parameters are set to n = 3, k = 0.3, τ = 1, kfast = 0.1 and kslow = 0.8. For τFyn = τZAP-70 = 1 the cascade was not
activated properly. (E) Ratio of activation and deactivation time, r, for 20 different kfast and kslow. log10 (kfast) and log10 (kslow)
are uniform from [-2, 0]. Other parameters are set to n = 3, k = 0.3, τ = 1, τFyn = τZAP-70 = 10. In the white areas the cascade
was not activated properly. (F) Comparison between time course y(t) with the manually determined parameters and time
course y3(t) with the decreased threshold in the activation of LAT-phosp by ZAP-70 as described in the section about
monotony properties. Plotted is the difference y'(t) - y(t).
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substracting the discrete from the continuous time course
(Figure 3C). The activation of the feedback loops in the
Boolean model was conveniently chosen such that we
have a total deactivation of the transcription factors at
around t = 67 in both models. While we observed an
almost perfect agreement of the time courses of the three
inputs, there was a huge difference in the time courses of
the species involved in the two feedback loops. This was
not surprising, considering that these loops are regulated
differently in bothmodels. The species downstream of the
regulatory loops (from LAT phosp to CRE in Figure 3C)
showed again a similar expression pattern.

We then analyzed this part of the cascade more deeply.
Figure 3C also shows the correlation between the discrete
and the continuous expression pattern of the species
downstream of the feedback loops at each time point 0
<t < 100. We observed a high correlation in the more
stationary phases (resting state, activated state and
deactivated state) and a significant drop of correlation
during the transitions between these phases. This met
our expectation that the two models show the same
qualitative but a different dynamic behavior.

Ratio of activation and deactivation time
When looking at Figures 3A and 3B, a striking difference
between the dynamics of both models is that in the
discrete model activation and deactivation took approxi-
mately the same time, whereas in the continuous model
activation was a much faster process than deactivation.
This can also be seen from the red and blue ‘steps’ in
upper Figure 3C during the activation and deactivation
phases. To confirm that this was not merely an artefact of
our choice of parameters, we calculated and analyzed the
ratio between activation and deactivation time for
different parameters. We defined

• the beginning of activation tActBeg as the time when
the first species (of the lower 29) reaches 5% of its
maximal value,
• the end of activation tActEnd as the time when the
last species reaches 95% of its maximal value,
• the beginning of deactivation tDeactBeg as the time
after tActEnd when the first species drops under 95% of
its maximal value,
• the end of deactivation tDeactEnd as the time when
the last species drops under 5% of its maximal value,
• and, finally, the ratio of interest

r =
−
−

t t

t t
ActEnd ActBeg

DeactEnd DeactBeg
.

In the Boolean model we could easily compute rb = 1
implying equally fast activation and deactivation. In the

continuousmodel the crucial parameters were the life-times
τFyn and τZAP-70 on the one hand and the concentration
thresholds kfast and kslow on the other hand. The remaining
parameters were set to n = 3, k = 0.3 and τ = 1.

First, we computed r for fixed kfast and kslow and different
τFyn = τZAP-70. The result is shown in Figure 3D. For τFyn =
τZAP-70 = 1 the cascade was not activated properly. For
larger values we observed a decrease in r implying that
an increase of τFyn and τZAP-70 prolonged the deactivation
phase. This was to be expected — longer life-times
resulted in a lessened increase of the decisive elements
Fyn and ZAP-70 in the regulatory loop.

Second, we analyzed the effect of kfast and kslow for fixed
τFyn = τZAP-70 = 10. The result is shown in Figure 3E. Only
for parameters kfast ≪ kslow < 1 the cascade was activated
properly. This agrees well with the fact that the difference
between these two parameters is responsible for the
delayed activation of the feedback loops. If it was not big
enough the cascade was being deactivated before it had
been fully activated. The greater this difference was, i.e.
the farther we go away from the diagonal in Figure 3E,
the smaller r got, implying that a later activation of the
feedback loops prolonged the deactivation phase. How-
ever, despite all these influences of the parameters, we
observed much smaller ratios r in the continuous model
than in the Boolean model. The average r’s in Figures 3D
and 3E were rc

( )1 = 0.24 and rc
( )2 = 0.27, respectively,

which were both significantly smaller then rb = 1. This
suggests that r ≪ 1 may be an invariant of the dynamical
system of biological importance.

Explanation of experimental data using the
continuous T-cell model
The crucial question is if our model can reproduce real
data. To test this we used the data set presented in [12]
(see Methods). It describes the dynamics of the activa-
tion of key signaling elements upon activation of the
TCR by three different ligands with varying affinity,
Q144, Y144 and L144. We considered, in particular, the
ligand L144 for which experiments were performed with
three different ligand concentrations. Using global
minimization of the model fit with respect to the data,
we were able to determine a set of parameters for which
our model reasonably reproduced the experimental data
(see Methods and Table 1). Figures 4A-D show the
corresponding simulated time courses. We see that the
model was able to approximate the time courses of ERK
and IKK well. The fit of JNK was also acceptable,
although the high measured concentrations at time t = 0
constituted a problem, as the model was naturally
unable to reproduce them due to the delaying effect of
the signaling cascade. In the case of NFAT, the model was
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Table 1: Best fit parameter set for ligand L144

Species Input n k Input n k Input n k τ

zap70 tcrphosp 2 0.29 lck 1 0.33 ccbl 1 0.30 2.77

tcrphosp tcr 1 0.34 lck 1 0.34 fyn 1 0.13 0.03

tcr TCRlig 1 0.20 ccbl 1 0.41 0.59

slp76 gads 1 0.35 0.24

sek pkcth 1 0.26 0.01

rsk erk 3 0.30 1.00

rlk lck 1 0.36 1.02

rasgrp pkcth 1 0.40 dag 1 0.39 2.76

ras rasgrp 3 0.33 grb2sos 17 0.39 7.50

raf ras 3 0.31 11.80

plcgbind lat 5 0.36 0.01

plcgact zap70 1 0.10 slp76 1 0.29 rlk 1 0.24 0.01

plcgbind 1 0.31 itk 2 0.34

pkcth dag 2 0.31 8.66

pagcsk tcr 1 0.32 fyn 1 0.69 1.33

nfkb ikb 3 0.30 1.00

nfat calcen 1 0.37 5.03

mek raf 1 0.28 0.01

TCRlig ext. sig. 1 0.12 1.28

lck pagcsk 2 0.30 cd4 2 0.37 cd45 1 0.33 0.15

lat zap70 3 0.14 0.01

jun jnk 3 0.30 1.00

jnk sek 4 0.57 0.08

itk zap70 2 0.10 slp76 1 0.31 0.01

ip3 plcgact 2 0.38 0.01

ikkbeta pkcth 18 0.33 10.55

ikb ikkbeta 3 0.30 1.00

grb2sos lat 8 0.46 5.26

gads lat 1 0.36 0.12

fyn tcr 6 0.27 lck 2 0.30 cd45 4 0.37 0.46

fos erk 3 0.30 1.00

erk mek 2 0.28 0.10

dag plcgact 3 0.28 0.01

creb rsk 3 0.30 1.00
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unable to reproduce the non-monotone dependence on
the ligand concentration. This suggests that the network
structure cannot be reconciled with the non-monotone
dependence of the two key signaling molecules JNK and
especially NFAT with respect to the ligand concentration.
A non-monotone response of T-cell signals has been
reported in other contexts [18], and is consistent with the
role of T-cells: their response has to be exquisitely
regulated so as to reply only to a particular stimulus; an
uncoupled response between the JNK (and p38) and
ERK MAP Kinases has also been observed [19]. The
regulation of NFAT and JNK, and more generally of TCR-
induced signaling, is complex and not yet fully under-
stood. To mention just two examples, processes such as
Ras localization [20] have been shown to play a key role,
but are not included in the model, and the regulation of
calcium, which governs NFAT behavior, is more complex
than described in the model. It is out of the scope of this
paper to investigate this intriguing behavior in detail, but
this result illustrates the power of our approach to gain
new biological insight: taking exactly the same knowl-
edge encoded in the discrete model and fitting it to
quantitative data, we were able to identify the incom-
pleteness of our model in an aspect that we could not
have explored with a discrete model.

Best fit parameter set
Subsequently, we analyzed the distribution of the Hill
parameters within the best fit parameter set for ligand
L144 (Table 1). When looking at the distribution of
the exponents n upstream of the measured species
(Figure 4F) we found that after the optimization 36
out of 49 (73%) were below the ad hoc estimate (3) and
only 8(16%) were above it. This was to be expected, as in
order to fit three different concentration levels the model
had to contain mainly slow switches (low n) and only
few Boolean-like switches (n Æ ∞). Figure 4E shows the
distribution of the threshold parameters k upstream of
the measured species. As explained above, we had
manually set these parameters to 0.3, with the exception

of four k’s which had been set to kslow = 0.8 and two k’s
which had been set to kfast = 0.1. Interestingly, this
structure had been preserved during the optimization.
The mean of the thresholds k was 0.298 and hence well
agreed with the ad hoc estimate. Also the high and low
thresholds were still at least two standard deviations
away from the mean, cf. the red and blue markers ‘+’ in
Figure 4E. Only one other parameter k also had a Z-score
above 2: the threshold kL144 for the stimulation of the
TCR by the ligand L144, cf. marker ‘o’. Possible
implications hereof are discussed below.

Due to the large number of parameters the obtained
parameter set was, of course, far from being unique. But
we showed that a continuous model inferred from a
Boolean model is able to reproduce experimental data in
a quantitative way. Moreover, this transformation could
enhance the explanatory power of the model in the sense
that it was enabled to differentiate between more than
two states.

In our example, the threshold parameters k are rather
tightly centered around their mean. In principle, how-
ever, we could also have extreme outliers, i.e. very large
or very small (≈ 0) values in the distribution. Mapped
back to the Boolean model, this would imply a change of
the network topology, as the corresponding reactions are
then quasi-constant, either ‘off’ (for very large k) or ‘on’
(for very small k). Thus, a fitting of the continuous
model to experimental data may also yield information
about the network structure of the Boolean model.

Prediction of binding affinities of different ligands
As already mentioned, the fitted threshold kL144 for the
stimulation of the TCR by the ligand L144 was
significantly below the mean of the other thresholds k,
cf. marker ‘o’ in Figure 4E. This gave rise to the question
of which affinities the model predicts for the other two
ligands. To this end, we fitted the affinities of Q144 and
Y144, mapped to the inverse of the Hill function’s

Table 1: Best fit parameter set for ligand L144 (Continued)

cre creb 3 0.30 1.00

cd4 ext. sig. 1 0.32 2.25

cd45 ext. sig. 1 0.35 1.64

ccbl zap70 1 0.70 0.29

calcen ca 11 0.30 4.53

ca ip3 3 0.33 0.20

ap1 jun 3 0.30 fos 3 0.30 1.00

The bold entries are the parameters downstream of all measured species. They were not affected by the optimization process.
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threshold parameters kQ144 and kY144, respectively,
keeping the rest of the parameters constant. As expected,
the fits themselves were far from perfect, due to
parameter indeterminacies. Surprisingly however, the
values of kQ144 and kY144 we obtained were significantly
above the mean of the other thresholds k, cf. markers ‘◇’
and ‘□’ in Figure 4E. This suggests that the predicted
relation between the parameters kL144 ≪ kY144 <kQ144 is
not simply an artefact of the optimization process. And
indeed, it agrees well with experimental data [21].

Discussion
We now further discuss the presented transformation
method and compare it to various other approaches.
Also the relation between discrete and continuous
models is discussed, especially with respect to their
steady-state behavior and monotony properties.

Comparison of different transformation approaches
The relation between discrete and continuous models
has already been investigated and various approaches to
the problem of constructing the continuous homologues

of the Boolean update rules have been proposed. In the
following we shortly review previous work and compare
the different approaches.

Piecewise linear differential equations
The idea to compare continuous and discrete models is
almost as old as Boolean modeling itself. In 1973, Glass
et al. [11] studied the relation between discrete models
and ODE models of the form (2). Their motivation,
however, was quite the opposite of ours. While we
intend to enrich the dynamic behavior of discrete
models, Glass et al. wanted to investigate the qualitative
properties of continuous networks by studying corre-
sponding simpler discrete models. They propose Hill
functions as a suitable continuous homologue of one-
variable Boolean step functions. In the case of multi-
variable Boolean functions Bi a (perfect) continuous
homologue Bi is constructed as follows: Note that,
when building a Boolean model, one implicitly intro-
duces a threshold 0 <θi < 1 for each species Xi and defines
its state as ‘on’ if its concentration is above this
threshold. The hyperplanes xi = θi, i = 1, 2, ..., N

Figure 4
Results of the parameter fit. (A-D) Simulation of the continuous model (solid lines) for high (red), medium (blue) and low
(green) concentrations of ligand L144 and experimentally measured concentrations, cf. markers ‘+’, ‘×’ and ‘○’. (A) ERK.
(B) JNK. (C) NFAT. (D) IKK. (E, F) Distribution of the Hill parameters in the best fit parameter set for ligand L144
(Table 1). (E) Distribution of the thresholds k. The markers ‘+’ indicate the position of the parameters which we set to kfast
(blue) and kslow (red) at the beginning of the optimization. The marker ‘○’ indicates the position of kL144; for comparability the
thresholds kQ144 and kY144 are also indicated, cf. the markers ‘◇’ and ‘□’, respectively. (F) Distribution of the Hill exponents n.
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decompose the cubes [ , ]0 1 Ni into 2Ni rectangular
regions called domains. Each of these domains contains
exactly one vertex a Ni∈{ , }0 1 and is denoted by Di

a

accordingly (see Additional data file 4). A simple way of
defining the functions Bi is now to set

B x x x B a x x x Di i i iN i i i iN i
a

i i

PW  where ( , ,..., ) ( ), ( , ,..., )1 2 1 2= ∈ ..

(6)

With this definition model (2) is a so-called piecewise
linear ODE model which means that within each domain
Di

a equation (2) is a linear ODE of the form
&x xi i i i= −( ) /a t . This kind of equation is very well
understood and can be solved analytically. The functions
Bi

PW defined in (6) perfectly agree with Bi on the vertices
of the unit cube. Using piecewise linear ODEs Glass et al.
could prove some theoretical results on the relation
between discrete and continuous models, e.g. that
Boolean steady-states are also steady-states of the
continuous model. Some of these results are restated
and generalized in the Methods section. Piecewise linear
models are typically not used for quantitative simula-
tions, as the step-like transition between the different
domains is often unrealistic. Rather they are analyzed in
a qualitative and semi-qualitative way, where their
trajectories between the different domains are treated
analogously to the state transition graphs of Boolean
models [22].

Fuzzy logic
Another well studied way of generalizing Boolean
models is fuzzy logic [23]. Recall that in a Boolean
model one defines the state of a species as ‘on’ if its
concentration is above a certain threshold. In fuzzy logic
this concept is relaxed and a so-called degree of member-
ship (DOM) function 0 1≤ ≤m X ii

x( ) is introduced for
each species Xi. For concentrations 0 = xi = 1 this
function gives the degree with which we say that Xi is
‘on’. There are two standard ways of generalizing the
Boolean operators AND, OR, NOT:

(i) min-max logic

x x x x

x x x x

x

i j X i X j

i j X i X j

i

i j

i j

∧

∨

¬ −

a

a

a

min( ( ), ( ))

max( ( ), ( ))

m m

m m

1 mm X ii
x( )

(7)

(ii) product-sum logic

x x x x

x x x x

x x

i j X i X j

i j X i X j

i X i

i j

i j

i

∧ ⋅

∨ +

¬ −

a

a

a

m m

m m

m

( ) ( )

( ) ( )

( )1

(8)

When using product-sum logic, a normalization to the
unit interval is necessary, since m mX i X ji j

x x( ) ( )+ can
assume values greater than 1. Both, (i) as well as (ii) are
ways to construct the functions Bi from the Boolean
functions Bi. If the DOM functions satisfy μ(0) = 0 and
μ(1) = 1, the functions Bi

MM obtained by min-max logic
agree with Bi on the vertices of the unit cube and hence
the steady-states of the Boolean model are also steady-
states of the continuous model. The major drawback of
this method is that the functions Bi

MM are in general not
differentiable, and do not have a ‘nice’ analytic
representation (Figure 5B). Hence most analysis meth-
ods are not applicable to the resulting ODE systems.
When we use product-sum logic, we encounter the
problem that the resulting functions Bi

PS do not
necessarily agree with Bi (Figure 5C).

Standardized qualitative dynamical systems
Mendoza et al. [10] put forward a method to transform a
Boolean model into a system of ODEs similar to (2)
called standardized qualitative dynamical system. Their
approach, however, is applicable only to a subclass of
Boolean models: For each species Xi we have a set of
activators Ai and a set of inhibitors Ii of Xi. Then xi is set
to 1 at the next time step if at this time any of its
activators and none of its inhibitors are acting upon it,
otherwise xi is set to 0. This corresponds to the Boolean
logic � �a A r Ii i

a r∈ ∈( ) ∧ ¬( ) . Clearly, many logic func-
tions, like XOR gates for example, cannot be represented
that way. From this Boolean model a continuous model
is built up consisting of ODEs of the form

&x
e h e h i

e h e h i
xi i i= − + − −

− + − − −
0 5 0 5

1 0 5 1 0 5

. ( . )

( . )( ( . ))
,

w

w g

Where

wi
Ai

Ai

x jX j Ai
x jX j Ai

Ii
Ii

x jX j Ii
x jX j Ii

= + ∈∑

∈∑
− + ∈∑

+ ∈

1
1

1
1

| |
| |

| |
| | ∑∑

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
. (9)

The right-hand side of the above ODE consists of two
parts: an activation function and a term for decay as in
(2). The activation is given by a sigmoid shaped function
of ωi, where ωi represents the total input to node Xi. The
steepness of the activation function is determined by the
parameter h. Decay is assumed to be proportional to xi .
Actually, a more general form of ωi is introduced in [10],
where the influence of the activators and inhibitors can
be differently weighted. For the sake of better compar-
ability we set all these weights equally to 1, as suggested
in [10]. The more activators and the less inhibitors of a
node are 1, the greater ωi is. It takes its minimum (0), iff
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all activators are 0 or all inhibitors are 1, and itsmaximum
(1), iff all activators are 1 and all inhibitors are 0. This,
however, does not exactly correspond to the Boolean rule
from above. In consequence, steady-states of the Boolean
model are not necessarily steady-states of the continuous
model. This will be further discussed below.

Multivariate polynomial interpolation
The aforementioned attempts only lead to functions
which are either not differentiable or do not precisely
generalize the Boolean logic. A straightforward approach
to eliminate these drawbacks is to use multivariate
polynomial interpolation [13] for the construction of the
functions Bi (see Methods). This technique can be
applied to any Boolean function Bi. The resulting
BooleCubes Bi

I are smooth and can easily be analytically
differentiated and integrated. They agree with the
Boolean functions Bi on the vertices of the unit cube

and hence the steady-states from the Boolean model are
also steady-states in the continuous model.

We define Hill functions fij for all interactions and
consider the HillCubes Bi

H from equation (4). The idea
behind this is that each interaction is described by its own
Hill function with specific parameters and the different
interactions are coupled by the BooleCubes. Since they
are affine multilinear, the latter preserve the shape of the
individual Hill functions. Thus, we can mimic single-
component non-linearities which are common in switch-
like regulatory systems. Additional data file 3 shows the
HillCubes derived from all 16 two-variable Boolean gates.
A mathematically rigorous treatment of this kind of
dynamical systems can be found in [14]. If the Hill
coefficient n goes to infinity the Hill function becomes
more and more like a Boolean step function (see
Additional data file 2). Hence for large exponents the

Figure 5
Comparison of different transformation techniques. Different continuous homologues of a Boolean OR gate. (A)
Piecewise linear function BPW . (B) Function BMM obtained by min-max fuzzy logic and linear DOM functions. (C) Function
BPS obtained by product-sum fuzzy logic and linear DOM functions. (D) Input function ω introduced by Mendoza et al. [10].
(E) BooleCube B I obtained by multivariate polynomial interpolation. (F) HillCube BH . (G) normalized HillCube BHn . In the
last two figures parameters n = 3 and k = 0.5 were chosen for both inputs. (H) Overview of the different transformation
techniques with respect to their analytical properties and transformation accuracy.
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HillCubes are very similar to the Boolean functions Bi and
the continuous systemwill likely show an almost Boolean
behavior. This is further illustrated in Figure 6.

The HillCubes do not perfectly agree with the Boolean
update functions due to the asymptotic behavior of the
Hill functions. By a suitable choice of the Hill parameters
the difference can be reduced but not fully eliminated. An

easy way to achieve a perfect agreement is to normalize
the Hill functions to the unit interval, as is done in the
normalized HillCubes Bi

Hn from equation (5).

Comparison
To conclude, we illustrate the above methods applied to
a simple OR gate between two species X1 and X2. We
compute

Figure 6
Effect of increasing Hill exponents. We consider a simple cascade between the four species X1, X2, X3, X4 as shown in
the inset in (A). Each activation is modeled using a Hill function with threshold k = 0.5 and Hill coefficient n. The life-times τi
are set to 1. As initial conditions we take x1 = c > 0, x2 = 0, x3 = 0, x4 = 0, for some constant input concentration c. The
input node X1 remains constant and the other concentrations xi change accordingly to the ODE &x x x k xi i

n
i
n n

i= + −− −1 1/( ) ,
i = 2, 3, 4. We simulate the model for different Hill coefficients n = 1, 4, 16 and input level c = 1; the results are shown in
(A), (B) and (C). All three time courses show qualitatively the same cascade-like pattern. With growing n, however, the
onset of activation of X3 and X4 comes closer and closer to the time point at which their activators X2 and X3, respectively,
cross the threshold k. (D) shows the input-output curve. Plotted is the (constant) input concentration c of node X1
against the steady-state concentration of node X4. For n > 1, we observe the typical sigmoid stimulus-response behavior
of signaling cascades, see e.g. [28]. With increasing n the steepness of the input-output curve increases, leading to an
almost discrete (Boolean) output in the case n = 16.
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• the piecewise linear function

B
x xPW where  and 

elsewhere
=

< = < =⎧
⎨
⎩

0 0 5 0 5

1
1 1 2 2q q: . : .

from equation (6),
• B x x x xMM( , ) max( , )1 2 1 2= obtained by fuzzy logic
(with linear DOM functions) following (7),
• B x x x xPS( , ) ( )1 2 1 2= + obtained by fuzzy logic
(with linear DOM functions) following (8),

• the input function from equation (9) introduced by
Mendoza et al.

w( , ) ,x x
x x
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3
2

1 2
1 1 2

= +
+ +

• the BooleCube B x x x x x xI( , )1 2 1 2 1 2= − + + from
equation (3) obtained by the interpolation techni-
que,
• the HillCube B x x B f x f xIH( , ) ( ( ), ( ))1 2 1 1 2 2= from
equation (4) for Hill functions f1 and f2 with
parameters n = 3, k = 0.5,
• and, finally, the normalization
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f x
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of BH from equation (5).

Figures 5C and 5D show the product-sum fuzzy logic
function BPS and the input function ω. One can clearly
see that they do not represent a pure OR gate, where the
values at (x1, x2) = (1, 0) and (x1, x2) = (0, 1) should
already be maximal. This is the case in Figures 5A and 5B
which show the piecewise linear BPW and the min-max
fuzzy logic function BMM . Here however, the problem is
that the functions are not differentiable, as can easily be
seen from their plots. The BooleCube B I shown in
Figure 5E is both, smooth and maximal as soon as any
concentration is equal to 1. Finally, Figures 5F and 5G
show the (normalized) HillCubes BH and BHn ,
respectively, which are also smooth and can be
considered good transformations of the Boolean OR
gate. An overview about the discussed advantages and
disadvantages of the different transformation techniques
is provided in Figure 5H.

Theoretical results about steady-states
A fundamental principle of biological modeling is that
steady-states of a model typically correspond to the
different operating modes or states of the biological
system under study. This correspondence was also the
motivation for Kauffman’s seminal study [1], where
Boolean models were introduced for the first time in
biology. A critical step in the justification of any

transformation method therefore is to ensure that at
least the steady-states of the Boolean model are still
steady-states in the homologue continuous system. In
the case of a perfect agreement of the Boolean update
rules Bi with their continuous homologues Bi this can
easily be shown (see Methods and [11]). This perfect
agreement, however, is not a biologically plausible
assumption; biological interactions, such as enzyme
kinetics for example, are known to asymptotically
approach but never fully reach a saturation level. Empiric
evidence that also in real-world examples, the steady-
states of a Boolean model correspond to steady-states of
a homologue continuous model, is given by Mendoza et
al. [10]. The method of transformation used therein has
already been described above and we also mentioned
that it does not accurately transform the Boolean update
rule into a continuous activation function. This inaccu-
racy is due to a systematic difference between the
Boolean logic and the analytic form of the activation
function. It is not the result of an asymptotic sigmoid
function; in fact, the used sigmoid function assumes its
maximal values 0 and 1. One can easily construct an
example where due to this systematic difference Boolean
steady-states are not conserved under the transformation
(see Additional data file 5).

In the case of the HillCube model, it is the other way
round. There is no systematic difference between the
Boolean update rules and the HillCube functions, the
imperfect agreement is caused by the asymptotic
behavior of the Hill functions. Therefore, the difference
between both can be made arbitrarily small — albeit not
zero — by a suitable choice of parameters. In this
situation, we can show that for certain parameters, more
precisely for sufficiently large exponents, there will be a
steady-state of the continuous system in the neighbor-
hood of each Boolean steady-state (see Methods). This
theoretical result further justifies the presented transfor-
mation method.

Monotony properties
A nice feature of our method for converting Boolean into
continuous models is that monotony properties, typi-
cally captured in the underlying interaction graph of the
system, are preserved. Interaction graphs are signed
directed graphs where each directed edge reflects a causal
dependency, which can either be positive or negative,
between its start and end node. Boolean models
represented as interaction hypergraphs have a unique
underlying interaction graph which can easily be derived
from the logical model (by splitting the ANDs, see Klamt
et al. [6]). For example, the Boolean function A = (¬B ∧ C)
∨ D would be translated into two positive arcs (C Æ A,
D Æ A) and one negative arc (B ⊣ A). In the interaction
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graph one may then compute the recently introduced
dependencymatrix [6,24], which determines for each pair
(X, Y) of species the global effect of X on Y. This effect can
— in some cases only initially — be positive, negative,
ambivalent or vanishing.

For example, the dependency matrix of the T-cell model
tells us, that LAT-phosp exerts purely positive effects on
ERK, JNK, IKK, and NFAT, because there are only positive
paths from LAT-phosp to these species and no negative
feedback is involved. If we simulate a scenario with the
logical model and repeat it then with e.g. fixing LAT-
phosp to 1 (i.e. to the highest possible value), the
resulting Boolean values in the four species mentioned
above cannot decrease. In continuous systems, the
interaction graph is encoded in the sign structure of the
Jacobian matrix. In fact, in a continuous system obtained
from a Boolean model the interaction graph is up to
negative self-loops identical and monotony properties
are therefore preserved. Accordingly, a positive perturba-
tion in LAT-phosp, e.g. by permanently decreasing the
threshold of ZAP-70 in the interaction activating LAT-
phosp, results in a trajectory that is always above the
trajectory of the non-perturbed system (Figure 3F). In
fact, in accordance with the interaction graph of the
Boolean model, we observe purely positive effects on all
species downstream of LAT-phosp with the exception of
ikB. Hence, important qualitative properties of the
dynamics derived from the logical model are reflected
in the dynamics of the continuous system.

Conclusion
With increasing amounts of quantitative data being
available, the challenge arises how we can use our
typically qualitative knowledge about biological systems
to explain this data. For this purpose, we presented a
canonical and fully standardized way of transforming
qualitative discrete into continuous models. The trans-
formation is accurate and we can show that it preserves
the steady-state behavior as well as the monotony
properties of the discrete model. The feasibility of the
presented approach was substantiated by applying it to a
logical model of T-cell receptor signaling. The resulting
model is an extensive continuous model of T-cell
activation. In contrast to the Boolean model it allowed
to accommodate different time scales by adjusting
kinetic parameters. It was competent to reproduce time
courses of key signaling molecules measured for three
different ligand concentration levels. Moreover, the
model was able to predict the binding affinities of
different ligands.

Being fully automatized [Krumsiek et al.: Odefy — From
discrete to continuous models. In preparation (2009)]

the presented method recommends itself to be applied
to further biological systems. Future work could also aim
at generalizing the approach from Boolean (binary) to
s-state systems, where one no longer differentiates
between two but s > 2 discrete states, e.g. ‘low’, ‘medium’

and ‘high’. Finally, the relation between a discrete model
and its continuous homologue needs to be further
investigated, especially with respect to more complex
behaviors like oscillations, which are of importance in
many biological systems, such as cell cycle.

Methods
Multivariate polynomial interpolation
We now explain the technique of multivariate poly-
nomial interpolation of a single Boolean function Bi.
Therefore i Œ {1, 2, ..., N} is fixed and for the sake of
simplicity the subscript i is omitted. We remark that here
B can be any real-valued function on the vertices of the
unit cube {0, 1}N, i.e. does not necessarily have to be a
Boolean function. The idea is, to find a polynomial

B I : RN Æ R that is a continuation of Bi in the
sense that B x x x B x x xN N

I( , , ..., ) ( , ,..., )1 2 1 2= for all
x x xN1 2 0 1, ,..., { , }∈ .

One can easily see, that there is no unique solution to
this problem. Therefore, we additionally require that the
degree of the polynomial be minimal, where the degree
of some polynomial

f y y y a y y yN m m m
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We now show that B I indeed satisfies the three
requirements for interpolation functions that we set
out at the beginning (see section on continuous
homologues of Boolean functions).

Theorem. The function B I has the following properties:

( i ) B x x x B x x xN N
I( , , ..., ) ( , ,..., )1 2 1 2= f o r a l l

x x xN1 2 0 1, ,..., { , }∈ .
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(ii) B I is the unique minimal degree polynomial inter-
polating B.
(iii) Let s denote the number of symmetry hyperplanes of
B, i.e. the number of variables xi satisfying
B(x1, ..., xi-1, 0, xi+1, ..., xN) = B(x1, ..., xi-1, 1, xi+1, ...,
xN), for all (x1, ..., x̂ i , ..., xN) ε {0, 1}N-1. Then deg
( BI ) = N - s.
(iv) BI is affine multilinear. It is multilinear iff it
corresponds to an AND gate, i.e.
B(x1, x2, ..., xN) = � i

N
ix=1 .

(v) Let 0 11 2≤ ≤x x xN, , ..., . Then it holds
min ( , ,..., ) max .

{ , } { , }0 1
1 2

0 1N N
B B x x x BI

N≤ ≤

In particular, B x x xI
N( , ,..., ) [ , ]1 2 0 1∈ if B is a Boolean

function.
Proof. (i) Note that for xi Œ {0, 1} we have

x x x x
x x

i i i i
i i+ − − =
=⎧

⎨
⎩

( )( )
,

.
1 1

1

0

if 

otherswise

(ii) A minimal degree interpolation polynomial is of the
form
f x x x a x x xN m m m

m m
N
m

m m m
N

N

N
N

( , ,..., )
( , ,..., ) { , }

1 2 1 2

0 1
1 2

1 2
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=
∈

L L∑∑ (*)

since exponents greater than 1 can be replaced by 1
without changing the values of f for x x xN1 2 0 1, ,..., { , }∈ .
We order the vertices of the unit cube such that the
number of 1’s in the coordinates is not decreasing and
denote the reordered sequence by ( )Vk k

N

=1
2 . Then we

consider the sequence of equations f(Vk) = B(Vk), k = 1,
2, ..., 2N . For all k Œ {1, 2, ..., 2N} there is exactly one
c o e f f i c i e n t am m mN1 2L w h o s e m o n o m i a l
g x x x x x xN

m m
N
mN( , ,..., )1 2 1 2

1 2= L satisfies g(Vk) = 0, k =
1, 2, ..., k - 1 and g(Vk) = 1. This allows to uniquely
determine the coefficients am m mN1 2L and that way also
the polynomial f. Since B I is of the form (*), it is the
unique minimal degree interpolation polynomial.
(iii) The degree of B I is clearly deg ( B I ) ≤ N. If B is
symmetric with respect to the hyperplane xi = 0.5, w.l.o.
g. i = 1, we have B(0, x2, ..., xN) = B(1, x2, ..., xN) for all
(x2, ..., xN) Œ {0, 1}N-1 and consequently
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Hence, deg ( B I ) ≤ N - 1. Inductively this proves (iii).

(iv) Let i Œ {1, 2, ..., N}. Then at fixed x x xi N1,..., , ..., the
derivative x B xi ia ∂ ∂

I
/ is constant so B I is affine

linear in xi . Moreover, we have

B B x Bi

i

N
I I I comes from an AND gate  is multilinear.. ⇔ = ⇔

=
∏

1

For the last equivalence note that if B I is multilinear,
then B x x xN

I( , , ..., )1 2 0= if any xi = 0.
(v) Assume B x x x BN N

I( , , ..., ) max
{ , }1 2 0 1

> and w.l.o.g.
x1 0 1∉{ , } . T h e n i t f o l l ow s f r om ( i v ) t h a t
B x x BN N

I( , , ..., ) max
{ , }

0 2 0 1
> o r

B x x BN N
I( , , ..., ) max

{ , }
1 2 0 1

> . Inductively, we obtain x Œ
{0, 1}N such that B x BN

I( ) max
{ , }

>
0 1 , a contradiction to

( i ) . A n a l o g o u s l y , o n e p r o v e s t h a t
B x x x BN N

I( , , ..., ) min
{ , }1 2 0 1

≥ . □

Note that in general deg ( B I ) = N - s does not hold, as
can be seen from the Boolean function in three variables
x1, x2, x3

B B B B

B B

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1

1 0 0 1 1 0 1
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This function does not have any symmetry hyperplanes, but
its interpolation B x x x x x x x x xI = + + − − −1 2 3 1 2 1 3 2 3
has degree 2.

Theoretical results about steady-states
The following theorem investigates the steady-state
behavior of discrete and continuous models.

Theorem. Assume we are given a Boolean model and perfect
continuous homologues Bi of the Boolean update functions.
Then for any state vector x x x xN

N= ∈( , ,..., ) { , }1 2 0 1 the
following are equivalent:

(i) x is a steady-state of the Boolean model.

(ii) x is a steady-state of the model (1).

(iii) x is a steady-state of the ODE model (2).

Proof. The steady-state conditions are

x t x t B x t x t x t i Ni i i i i iNi
( ) ( ) ( ( ), ( ),..., ( )), , , ...,= + = =1 1 21 2

for the Boolean model,

x t x t B x t x t x t i Ni i i i i iNi
( ) ( ) ( ( ), ( ),..., ( )), , , ...,= + = =1 1 21 2

for model (1) and

0
1

1 21 2= = − =&x t
i

B x t x t x t x t ii i i i iN ii
( ) ( ( ( ), ( ),..., ( )) ( )), , , ..

t
..,N
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for model (2). Considering that the Bi are perfect
homologues of the Bi, these conditions are clearly
equivalent. □

Remark. Note that the above theorem generally applies to
transformations using perfect continuous homologues of
Boolean functions. In the special case of piecewise linear
ODEs, i.e. B Bi i= PW from equation (6), Glass et al. [11]
could show that the above theorem also holds when (iii)
is replaced by ‘ x is a stable steady-state of the ODE
model (2)’.

We now extend the above theorem to HillCube models.
The problem is that we can no longer assume a perfect
agreement between Bi

H and Bi. The main idea is to use
the implicit function theorem to prove the existence of a
steady-state of the continuous model in a neighborhood
of a Boolean steady-state.

Theorem. Assume we are given a Boolean model and the
corresponding HillCube model. Let x∞ Œ {0, 1}N be a steady-
state of the Boolean model. We fix the thresholds kij at values
in (0, 1) and the life-times τi at values in (0, ∞). Then there
exists a neighborhood U of x∞ such that for all sufficiently
large Hill exponents n = (nij) the HillCube model has a stable
steady-state x n in U . It holds

lim .( )

all n

n

ij

x x
 →∞

∞=

Proof. For a single Hill exponent n we write n = m-2, m ≠ 0,
fix some 0 <k < 1 and consider the Hill function

f x m
xm

km xm
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−
+
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2

2 2

We extend this function at m = 0 by setting

f x
x k

x k
( , )

,

,
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>

⎧
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Then there are open neighborhoods U1, U2 of 0 and 1,
respectively, such that f( x , m) is continuous on U1/2 × R

and it can be easily shown that f is even continuously
differentiable on U1/2 × R. Now consider the HillCube
model. It depends only on the Hill exponents n and we
define m = (mij) by n mij ij= −2 . For concentrations
x x x xN= ( , ,..., )1 2 let F(m, x ) denote the right hand
side of the HillCube ODE system. As explained above,
we continuously extend the Hill functions and hence
also F at m = 0. Then there exists an open neighborhood
U ⊂ RN of x∞ such that F is continuously differentiable
on R|m| × U (as the composition of continuously
differentiable functions).

For m = 0 the Hill functions become Boolean step
functions and hence the HillCubes perfectly agree with
the Boolean update rules. Therefore, we have F (0, x∞) = 0.
Now, let us compute the Jacobian DF of F in (0, x∞).
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where δij is the Kronecker delta. Note that for m = 0 the
Hill functions in the HillCubes are step functions, i.e.
constant in a neighborhood of x∞. Hence the derivative
of the HillCubes vanishes. This shows that DF is
diagonal negative definite and hence, in particular,
invertible. Therefore, the implicit function theorem
guarantees that there are open neighborhoods U’of x∞

and V’ ⊂ R|m| of 0 such that for each m Œ V’, i.e. for large
exponents n, there is a x n Œ U’ such that F(m, x n ) = 0,
i.e. x n is a steady-state of the model. Since the mapping
m ↦ x n is continuous we have x n Æ x∞ as m Æ 0 with
respect to the euclidean norm, i.e. all mij Æ 0 or
equivalently nij Æ ∞. Moreover, it follows that on subsets
V ⊆ V’ and U ⊆ U’ the Jacobian of F is still negative
definite and, consequently, the x n are stable steady-
states. □

Manual parameter determination for
the continuous T-cell model
The question is how to encode the information about
slow and fast interactions in the numeric values of the
parameters. We illustrate our approach using the subnet-
work shown in Figure 2C, where we focus on ZAP-70,
LAT phosp and cCbl. The activation of LAT phosp stands
for the interactions of scenario 2, whereas the activation
of cCbl represents scenario 3. The ODE system for this
network is given by
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For the activation of ZAP-70 k = 0.3 and τZAP-70 = 10 are
used. LAT phosp and cCbl are activated at thresholds
kfast = 0.1 and kslow = 0.8, respectively, and both their
life-times are set to τ = 1. Initial condition for all species
is 0 and the inputs for ZAP-70 are fixed at 1. The result of
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the numeric simulation is shown in Figure 2D. From the
beginning on ZAP-70 is activated but rather slowly due
to the increased life-time τZAP-70. The activations of LAT-
phosp and cCbl occur at around the time points when
the concentration of ZAP-70 crosses the thresholds kfast
and kslow, respectively. The high threshold kslow also
leads to a lower total activation level of cCbl. One can
clearly see the time lag between the activations of LAT
phosp and cCbl, i.e. between the interactions in scenario
2 and the interactions not occurring until scenario 3.

Model transformation and simulation
For the transformation of the Boolean T-cell model we
choose HillCube ODEs. HillCubes are better suited to
describe signaling cascades than BooleCubes. Normaliza-
tion is not necessary as we will choose thresholds k ≪ 1
and consequently the Hill functions will already satisfy
f(1) ≈ 1. For the transformation and simulation we
developed a MATLAB toolbox called Odefy [Krumsiek
et al.: Odefy — From discrete to continuous models. In
preparation (2009)], which is publicly available at http://
cmb.helmholtz-muenchen.de/odefy and allows the
experimentalist to easily transform Boolean models into
ODE models. Since Odefy can be integrated into
CellNetAnalyzer [24], we were able to export the Boolean
T-cell model from there. Numeric integration of the ODE
system was carried out using MATLAB ode15s, a variable-
order multistep solver based on the numerical differ-
entiation formulas.

Experimental data
Kemp et al. [12] created a data set describing the
dynamics of the activation of the key signaling elements
ERK, JNK, IKK and NFAT upon activation of the TCR. The
data was generated by stimulation of a T-cell line (1B6 T
cell hybridoma) with three peptides with different
affinities for the T-cell receptor, Q144, Y144 and L144.
In the case of L144 experiments were conducted for three
different peptide concentrations 0.04 μg/ml (low), 0.4
μg/ml (medium) and 4 μg/ml (high). In the case of
Q144 and Y144 only the high concentration of 4 μg/ml
was used. Concentrations of ERK, JNK, IKK and NFAT
were measured at 0, 10, 30, 60, 120, 240 and 2400
minutes. Here we neglected the last time point, as on this
slow time scale many interactions play a role, that are
not included in the model, such as gene expression. For
the parameter fitting the data were linearly rescaled to
the unit interval.

Parameter fitting
The T-cell model consists of 40 species, 55 pairwise
interactions and three external inputs. Hence, we have 40
life-time parameters and 58 pairs of Hill parameters,
amounting to a total of 156 parameters. Due to this large

number of parameters compared to the number of
experimental data points, the fitting problem is
obviously ill-posed as for many different parameter
sets the model reproduces the data equally well. For this
reason, we performed a two-step fitting process. First, we
determined a parameter set for which the model fits the
experimental data reasonably well. Second, we added a
regularization to account for the indeterminacies. Both
steps are optimization problems. The two cost functions
are given below. They take a parameter set consisting of
all Hill parameters (n, k) and all life-times τ as input a
yield a scalar loss value, that needs to be minimized. In
both steps we used a simulated annealing algorithm [25]
for minimization. As the threshold parameters k have to
be precisely adjusted at small values, these were fitted on
a log-scale, as is also done in [26]. Parameters down-
stream of the measured species were, of course, not
changed but fixed at their manually determined value.
We used the SBPD package of the Systems Biology Toolbox
[27] to create a compiled MATLAB simulation function
of our ODE model for faster performance.

Least squares fitting
In the first step we determined a parameter set for which
the model reproduces the data reasonably well. To this
end, we employed a least squares fitting, i.e. we
minimized the sum of the squared offsets of the data
points from the model prediction. In a first attempt, we
used only the offsets at the six time points t = 0, 10, 30,
60, 120, 240. This led to the model showing fast
oscillations, which almost perfectly fitted the data, and,
clearly, were an unrealistic overfitting. To avoid this, we
linearly interpolated the experimental data and mini-
mized the cost function
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where si denotes the time courses predicted by the model
and %si the interpolated data points. The simulated
annealing algorithm was started from the manually
determined parameter set and finally converged at a
cost function value of 18.98.

Regularization
In the regularization step we minimized the sum of the
coefficients of variation sn/μn, sk/μk and sτ/μτ within the
three parameter groups of n’s, k’s and τ’s, respectively,
under the constraint that the model’s fit to the data did
not deteriorate. The corresponding cost function is
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where the last term is a penalty term ensuring a constant
quality of the model’s fit. The simulated annealing was
started from the result of the first step. Idea of this
regularization is to account for parameter indetermina-
cies by reducing their variation and to enhance the
significance of ‘outliers’ like the affinity kL144 of the TCR
for the ligand L144, cf. Figure 4E.

Additional data file 6 shows model simulations for 5
different results of step 1. While not perfectly agreeing,
their overall dynamic behavior is the same. We can
reasonably assume that neither the parameter indeter-
minacies nor the regularization significantly influence
the dynamics of the experimentally observed species.
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