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Abstract

Background: Quantifying the robustness of biochemical models is important both for
determining the validity of a natural system model and for designing reliable and robust synthetic
biochemical networks. Several tools have been proposed in the literature. Unfortunately,
multiparameter robustness analysis suffers from computational limitations.

Results: A novel method for quantifying the robustness of oscillatory behavior to parameter
perturbations is presented in this paper. This method relies on the combination of Hopf bifurcation
and Routh-Hurwitz stability criterion, which is widely applied in control system design. The
proposed method is employed to calculate the robustness of two oscillating biochemical network
models previously analyzed in the literature. The robustness bounds here obtained are tighter than
what was previously obtained in the literature for both models.

Conclusion: The method here proposed for quantifying the robustness of biochemical oscillator
models is computationally less demanding than similar multiparamter variation techniques available
in the literature. It also provides tighter bounds on two models previously analyzed in the
literature.

Background
It is well acknowledged that characteristics of biochem-
ical systems, such as oscillatory behavior, are preserved
under significantly different environmental conditions,
i.e., the systems are robust. Some biological systems have
been experimentally proven to be robust [1-3]. Since
biological systems are robust, the mathematical models
developed to represent their characteristics must also
reflect this property. In addition, since it is not possible
to precisely determine the parameters in the modeling
process, biochemical system models must maintain basic
properties, such as oscillatory behavior, in the presence

of parameter perturbations [4]. Therefore, robustness is
considered as an important measure of the validity of
mathematical models. Determining the robustness of the
oscillatory behavior of a bio-molecular model has also
relevance in design problems. In fact, by determining the
region in parameter space where oscillations persist, one
can provide guidelines (see [5,6] for example) for
designing the components of synthetic oscillators such
as those of [7,8].

Parametric robustness of biochemical oscillator net-
works has been the subject of several studies [4,9]. In
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these studies, the maximum allowable parameter devia-
tion from nominal values under which the system
oscillations persist is considered as a metric for measur-
ing model robustness. Alternative definitions of para-
metric robustness are proposed in which the sensitivity
of the system equilibrium to parameter variation is
considered as a measure of robustness [10]. This
measure, however, is only applicable to non-oscillatory
systems. Bifurcation analysis is employed to study the
sensitivity of oscillatory behavior to variations of a single
parameter [11-14]. Systems whose robustness to one-
parameter-at-a-time variation is established may be
sensitive to simultaneous variation of parameters.
Unfortunately, analysis of the effect of multiparameter
variation on the oscillatory behavior of a system is
more computationally demanding compared to one-
parameter-at-a-time variation. In particular, systematic
variation of multiple parameters suffers from exponen-
tial increase in the number of combinations of para-
meters to be considered. Therefore, multiparametric
sensitivity has often been addressed via computer
simulations based on Monte Carlo methods [15].
Since this method relies on random variation of all
parameters, the resulting robustness evaluation is
inconclusive.

Structured Singular Value (SSV) analysis (μ-analysis), a
tool developed in the field of robust control, has been
employed to provide information on the robustness of
systems in the presence of multiple and simultaneous
parameter variations from nominal values [11]. In this
analysis, a parameter called μ, is calculated whose inverse
determines the maximum allowed parameter variation
beyond which the system is destabilized. For oscillatory
biochemical networks, destabilization means that the
system ceases to oscillate. The advantage of μ-analysis
over Monte Carlo methods is that, due to its determi-
nistic nature, it can compute the extent of parameter
uncertainty for which the model is guaranteed to
produce the desired behavior. However, for systems
with many parameters, μ-analysis is not computationally
feasible. Hence, one can only rely on computing upper
and lower bounds for μ, which determine the maximum
stabilizing parameter variation and the minimum
destabilizing parameter variation, respectively. To deter-
mine whether a system is robust, the lower bound of μ
must be calculated. However, available algorithms for
computing this lower bound suffer from the curse of
dimensionality, i.e., computational time grows exponen-
tially with the number of parameters [9]. Another
drawback of μ-analysis is that it relies on the lineariza-
tion of the system about the nominal oscillatory
trajectory. As a consequence, a specific combination of
parameter variations may destabilize the linearized
system while still leading to sustained oscillations in

the nonlinear system. This is highly likely in biochemical
networks as stable periodic solutions often arise due to
nonlinear dynamics.

In addition to μ-analysis, analysis of robustness of systems
to multiparameter variations has been approached by
searching the worst case combination of parameter
variations that suppresses oscillations. In [9], the integral
of the square of the derivative of one of the states,
considered as a measure of the occurrence of oscillations, is
minimized with respect to parameter variations employing
Hybrid Genetic Algorithms (HGA) [16]. This optimization
is performed to determine the region in the parameter
space where oscillations persist. Since this method is based
on exhaustive simulation, it cannot be applied for systems
with large numbers of states and parameters due to the
associated prohibitive computational cost. In this paper,
we introduce a novel robustness analysis method for
oscillatory behavior based on the combination of Hopf
bifurcation [17] and Routh-Hurwitz stability criterion [18].
Combining these two techniques, we compute a scalar
parameter ℛ (encompassing all system parameters), which
is solely responsible of Hopf bifurcation. As a consequence,
we study the persistence of the periodic orbit as this single
parameter ℛ is varied. This dramatically reduces the
complexity of the problem while retaining the desirable
features of multiparameter variation. To translate the
maximal variation of ℛ that preserves oscillatory behavior
to the maximal variation from a nominal parameter in the
original parameter space, we solve an optimization
problem. The so obtained maximum parameter variation
determines the largest box in parameter space about the
nominal parameter values in which the model displays
sustained oscillations. Under the assumption that the
terms of order higher than three in the Taylor expansion of
the system on the center manifold are negligible in the
found box, this box provides a tight estimate of the
robustness of the system.

We illustrate the application of our approach to models
of two molecular networks. The first model describes
the molecular network underling adenosine 3’,5’-cyclic
monophosphate (cAMP) oscillations observed in
populations of Dictyostelium cells, proposed by
Laub and Loomis in [19]. The second model describes
the metabolism of an activated neutrophil granulocyte
[20].

We next describe the details of the method proposed in
this paper.

Methods
In this section, we propose a robustness analysis
technique based on the combination of Hopf bifurcation
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[17] and Routh-Hurwitz stability criterion [18]. Consider
a model of a biochemical network given as

&x t f x t K f n p n( ) ( ( ), ), : ,= →+R R (1)

in which x(t) Œ Rn is a vector whose elements are
concentrations of chemical species and K Œ Rp is a vector
of parameters. LetK0ŒRp be a nominal parameter vector for
which system (1) displays a stable periodic orbit. We seek to
determine the maximal allowed variation of the parameters
K from the nominal value K0 before the stable periodic
solution disappears. We tackle this problem by analytically
computing the set of all values of K at which system (1)
admits a Hopf bifurcation.We then compute the largest box
in parameter space aboutK0 that does not include any of the
values of K at which the system admits a Hopf bifurcation.
Under suitable assumptions, this box is the largest box
about K0 in which sustained oscillations are preserved. This
is explained in more detail in the following section.

Hopf bifurcation analysis
At a Hopf bifurcation, an equilibrium of a dynamical
system loses stability as a pair of complex conjugate
eigenvalues of the linearization about the equilibrium
cross the imaginary axis of the complex plane. We thus first
compute the equilibrium of the system as a function of the
parameters, i.e., xe(K) such that f(xe(K), K) = 0. In systems
with S-system representation [10,21], the equilibrium can
be calculated analytically. For general systems, we rely on
numerical methods such as Newton’s iterations to compute
xe(K) [22]. Once a nominal equilibrium is identified, i.e.,
xe(K0), we initialize Newton’s method with this nominal
equilibrium to calculate the equilibrium when K ≠ K0.
Then, to determine conditions under which the system
undergoes a Hopf bifurcation, we study the behavior of the
eigenvalues of the matrix

A K
f
x

x K Ke
n n( ) : ( ( ), ) .= ∂

∂
∈ ×R (2)

Note that even if Hopf bifurcation relies on the properties of
the linearization matrix A(K), it allows to infer the existence
of a periodic orbit for the original nonlinear system [17].

Assume there exists an open region D ⊆ Rp in parameter
space about the nominal parameter vector K0 = (k0, 1,...,
k0, p) and a function ℛ: Rp Æ R, called R-function, with
the following properties:

(i) ℛ(K) = 0 if and only if A(K) has two imaginary
eigenvalues while all the others having negative real
parts;
(ii) ℛ (K) > 0 if and only if A(K) has two eigenvalues
with positive real parts while all the others having
negative real parts;

(iii) ℛ(K) < 0 if and only if all eigenvalues of A(K)
have negative real parts.

Let K = (k1,..., kp) and assume there exists an open box
Bδ*(K0) = {K Œ Rp| |ki - k0, i| <δ* for all i} contained in D
such that

For all K Œ Bδ
∗ (K0), ℛ(K) > 0;

There exists K̂ on the boundary of Bδ* (K0) such that ℛ
( K̂ ) = 0;
There exists a path Γ ending at K̂ in D\Bδ* (K0) such that
for all points on the path ℛ(K) < 0.

The sets D, Bδ* (K0), and the path Γ are illustrated in
Figure 1.

According to these assumptions, there is a path Γ in
parameter space, crossing through K̂ , along which ℛ(K)
is first negative, i.e., all eigenvalues of A(K) have negative
real parts. Then ℛ(K) = 0 at K = K̂ , i.e., A( K̂ ) has two
imaginary eigenvalues with all the others having negative
real parts. Finally, ℛ(K) > 0 in Bδ* (K0), i.e., A(K) has two
eigenvalues with positive real parts with all the others
having negative real parts. Therefore, a Hopf bifurcation
occurs at K̂ , corresponding to ℛ( K̂ ) = 0. A small
amplitude periodic orbit appears for small ℛ(K) > 0 if
the Hopf bifurcation is supercritical. Hence, if ℛ(K) is
sufficiently small for all K Œ Bδ* (K0) the system admits a
stable periodic orbit in Bδ* (K0) (having ℛ(K) small
enough in the box Bδ* (K0) implies that the Taylor
expansion of the system on the center manifold passing
through K̂ and xe( K̂ ) is such that the terms of order

Figure 1
Structure of the box Bδ* (K0). The box is in the area
where ℛ(K) > 0 and ℛ vanishes at K̂ on the boundary of
the box. The dashed curve shows a path Γ in D\Bδ* (K0) on
which ℛ(K) < 0.
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higher than three are negligible in Bδ* (K0)). According
to Hopf bifurcation theorem, at K = K̂ , the periodic
orbit disappears and therefore, we take d* as a
robustness measure.

The assumption that ℛ(K) is sufficiently small in the open
box δ* (K0) may not hold for all biochemical systems. One
can further validate that ℛ(K) is sufficiently small in the
open box Bδ* (K0) by simulating the system for ℛ(K)
between zero and its maximum in Bδ* (K0) and by
verifying that oscillations persist. Since simulation is
performed as one scalar parameter ℛ(K) varies (as
opposed to varying multiple parameters at once), it is
computationally feasible. It is worth noting that there may
be variations in how the higher order terms in the Taylor
expansion grow when ℛ(K) grows depending on the path
adopted to vary ℛ(K) inside the box Bδ* (K0).

Determining the R-function ℛ(K)
To construct the function ℛ, we consider the character-
istic polynomial of A(K)

C s K sI A K a s a K s a K s a K an n
n n

n n( , ) : det( ( )) ( ) ( ) ( ),= − = + + + +×
−

−0 1
1

1 0L == 1, (3)

in which the coefficients of the polynomial are functions
of the parameter vector K. To evaluate the effect of K on
the eigenvalues of A(K), we appeal to the well known
Routh-Hurwitz stability criterion [18]. This criterion can
be translated into a tabular method, in which for a
system with characteristic polynomial C(s, K), the table
has n + 1 rows and the following structure depicted in
Table 1 (neglecting the dependence on K). In this table,
dk

0 := a2k-1, dk
−1 := a2(k-1), k = 1, 2, ..., N

2 ,

d
d j di

j d j di
j

d j
j ni

j : , , ,=
−

+
− − −

+
−

− = −1
1

1
2

1
2

1
1

1
1

1 1L (4)

and

T
d d d d n

a n

n n n n

: .= − >
=

⎧
⎨
⎪

⎩⎪

− − − −
1

3
2

4
1

4
2

3

1

2

2
(5)

According to the Routh-Hurwitz criterion, the number of
eigenvalues of A(K) with positive real part is determined
by the number of sign changes in the vector

v K a K a K d K d K d K d Kn n( ) : [ ( ), ( ), ( ), ( ), , ( ), ( )].= − −
0 1 1

1
1
2

1
2

1
1L (6)

As shown in Appendix 1, we can take

R( ) : ( )K T K= −

as the R-function.

Algorithm for calculating the maximum allowed
uncertainty δ*
In light of the earlier section, the resulting algorithm for
calculating the maximum allowed uncertainty δ* about
K0 for which the stable periodic orbit is preserved is
summarized as follows.

Algorithm 1
Step 1. Calculate the maximum value of δ*, such that for
all K Œ Bδ* (K0), we have that ℛ(K) > 0.

Step 2. Identify K̂ on the boundary of Bδ* (K0) such that
ℛ( K̂ ) = 0.

Step 3. Verify that a0(K), a1(K), d1
1 (K, ..., dn

1
4− (K), and

dn
1

1− (K), computed in equation (4), are positive for all K
Œ Bδ* + � (K0) for some � > 0.

Step 4. Verify that in an open neighborhood N( K̂ )
⊂ Bδ* + � (K0) about K̂ , we have that ℛ(K) ≤ 0 implies
dn

1
3− (K) is positive. Set D := N( K̂ ) ∩ Bδ* (K0).

Step 5. Verify that the value of ℛ(K) for K on the path
Γ = {(1 -a)K0 + a K̂ | a > 1} ∩ Bδ* + � (K0) is negative.

Remark 1. If a0(K), a1(K), d1
1 (K, ..., dn

1
4− (K), dn

1
3− and

dn
1

1− (K) are all positive in D, Algorithm 1 can be
employed with ℛ(K) := - dn

1
2− (K).

Step 5 verifies that ℛ is negative on the path Γ outside
the region Bδ* (K0). Steps 3 and 4 verify that the
conditions under which ℛ(K) = -T(K) as given in
Appendix 1 are satisfied. In particular, since ℛ(K) ≤ 0
is equivalent to T(K) ≥ 0, Step 4 verifies that condition
(b) of Claim 1 in Appendix 1 is satisfied. Step 3 verifies
that condition (a) of Claim 1 in Appendix 1 is satisfied.
Once the function ℛ(K) has been computed, Step 1 can

Table 1: Tabular method for a system with characteristic
polynominal C (s, k)

sn a0 a2 a4 ...
sn-1 a1 a3 a5 ...

sn-2 d1
1 d2

1 d3
1 ...

sn-3 d1
2 d2

2 d3
2 ...

⋮ ⋮ ⋮ ⋮ ⋱
s3 dn

1
4− dn

2
4− 0 ...

s2 dn
1

3−
dn

2
3− 0 ...

s1 dn T

dn
1

2

1
3

− = − 0 0 ...

s0 d dn n
1

1
2

3− −= 0 0 ...
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be implemented by calculating the smallest δ for which
ℛ(K) is non-positive on some point in the closed box Bδ
(K0). This can be obtained by solving the following
optimization problem

min

: ( ) ( ).
,d

d

d
K

K K B Ksubject to  and R ≤ ∈0 0

This optimization problem provides the value of δ* of
Step 1 and the value of K̂ of Step 2. Similarly, Steps 3
and 4 can be implemented by determining the minimum
of the designated functions on the specified areas in the
parameter space. Step 5 can be implemented through a
scalar optimization problem, which can be solved via the
bisection method [23].

Remark 2. The robustness of the periodic orbit of a
system can be evaluated by determining the deviation δ*
from the nominal parameter values at which the
function ℛ changes sign. This deviation can be
numerically computed by employing standard optimiza-
tion techniques such as SQP and HGA. As a conse-
quence, this technique is computationally lighter than
multiparameter robustness analysis based on random-
search methods, in which the system is simulated at each
point in parameter space which is determined by the
random search algorithm.

Remark 3. If some key parameters are a priori identified
to have more significant influence on the system
dynamics than others, the proposed algorithm can be
employed to analyze the effect of variation of significant
parameters while non-significant ones are kept constant
at their nominal values. A method for determining the
robustness interval specifically for individual parameters
is considered in [9].

Results
In this section, we illustrate the detailed application of
Algorithm 1 to two well known models of oscillatory
biochemical networks and compare the results with
robustness measures previously obtained in the literature.

Application to the Laub and Loomis model
First, we consider a model of the molecular network
underlying adenosine 3’,5’-cyclic monophosphate
(cAMP) oscillations observed in populations of Dictyos-
telium cells, proposed by Laub and Loomis in [19]. The
model, based on the network depicted in Figure 2,
displays spontaneous oscillations in cAMP observed
during the early development of Dictyostelium
discoideum.

In this model, changes in the enzymatic activities of
these proteins are described by the following system of
seven non-linear differential equations

&x f x K

k x k x x

k x k x

k x k x x

k k x x

k x k

= =

−
−

−
−
−

( , )

1 7 2 1 2

3 5 4 2

5 7 6 2 3

7 8 3 4

9 1 10xx x

k x k x

k x k x

4 5

11 1 12 6

13 6 14 7

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

, (7)

in which the state variable x = [x1, ..., x7] represents
the concentration of the seven proteins: x1 = [ACA],
x2 = [PKA], x3 = [ERK2], x4 = [REGA], x5 = [Internal
cAMP], x6 = [External cAMP] and x7 = [CAR1]. The
fourteen coefficients, ki, i = 1, ..., 14, are system
parameters and we denote K = (k1, ..., k14). It is shown
in [19] that oscillations appear at the nominal parameter
values given in Table 2. We define the nominal
parameter vector K0 := [k0, 1, ..., k0, 14]. To calculate the
matrix A(K) in equation (2), we compute in the next
section the equilibrium of system (7).

Equilibria of the system
Since the system has S-system structure [10], i.e., the
elements of f(x, K) are the addition of two monomials,
the equilibrium can be calculated analytically. The
equilibrium we consider is given by ( ,..., )x x1 7 , in which,

Figure 2
Laub and Loomis model.
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For the detailed derivation, the reader is referred to
Appendix 2.

Determining the function ℛ
In this section, we employ the explicit representation of
the equilibria computed in the previous section to
linearize the system and compute the function ℛ. The
linearization of the system about the non-zero equili-
brium renders the linearization matrix

A K

k x k x k

k k

k x k x k

k x k x( ) =

− −
−

− −
− −

2 2 2 1 1

4 3

6 3 6 2 5

8 4 8

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 33

9 10 5 10 4

11 12

13 14

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

k k x k x

k k

k k

− −
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

. (8)

The characteristic polynomial of the matrix A(K) can be
written in the following form (neglecting the depen-
dence on K)

C s s a s a s a s a s a s a s a( ) ,= + + + + + + +7
1

6
2

5
3

4
4

3
5

2
6 7 (9)

in which ai, i = 0, ..., 6, are calculated analytically as
functions of k1, ..., k14. The corresponding Routh-
Hurwitz table is given in Table 3.

Following Remark 1, we set ℛ(K) = −d K1
5( ) and then

show that the values of a1(K), d K d K1
1

1
6( ), , ( )L are all

positive in the found set D. Since the expression of the
function ℛ(K) is very long, its exact formula is omitted
here. Instead, to provide a qualitative understanding of
the behavior of ℛ as a function of the parameter vector
K, Figure 3 shows the 2-dimensional zero level set of the
function ℛ for different nominal values of K.

Table 2: Nominal values for each parameter

Parameter Units Nominal Value

k0,1 min-1 2.0
k0,2 Mol-1min-1 0.9
k0,3 min-1 2.5
k0,4 min-1 1.5
k0,5 min-1 0.6
k0,6 Mol-1min-1 0.8
k0,7 Mol-1min-1 1.0
k0,8 Mol-1min-1 1.3
k0,9 min-1 0.3
k0,10 Mol-1min-1 0.8
k0,11 min-1 0.7
k0,12 min-1 4.9
k0,13 min-1 23.0
k0,14 min-1 4.5

Table 3: Routh Hurwitz table for characteristic polynomial (9)

s7 1 a2 a4 a6
s6 a1 a3 a5 a7

s5 d a a a
a1

1 1 2 3
1

= − d a a a
a2

1 1 4 5
1

= − d a a a
a3

1 1 6 7
1

= −
0

s4 d
d a a d

d
1
2 1

1
3 1 2

1

1
1=

− −
d

d a a d

d
2
2 1

1
5 1 3

1

1
1=
−

d a3
2

7= 0

s3 d
d d d d

d
1
3 1

2
2
1

1
1

2
2

1
2=
−

d
d d d d

d
2
3 1

2
3
1

1
1

3
2

1
2=
−

0 0

s2 d
d d d d

d
1
4 1

3
2
2

1
2

2
3

1
3=

−
d a2

4
7= 0 0

s1 d
d d d d

d
1
5 1

4
2
3

1
3

2
4

1
4=
−

0 0 0

s0 d a1
6

7= 0 0 0

Figure 3
Zero level sets of the function ℛ in the (k2, k14), (k14, k9) and (k9, k10) planes for different values of k3.

BMC Systems Biology 2009, 3:95 http://www.biomedcentral.com/1752-0509/3/95

Page 6 of 13
(page number not for citation purposes)



Implementation of Algorithm 1
Step1. To implement Step 1 of Algorithm 1, we determine
the largest δ such that ℛ(K) is positive in the open box
Bδ(K0). The box is defined as follows to reflect the relative
variation of parameters instead of absolute change:

B K K K k k k k id d d d d( ) : { | [ , , ],| | }., , , ,0
14

0 1 1 0 1 0 14 14 0 14= ∈ = + + ≤R L (10)

We determine the maximum percentage of the parameter
uncertainty under which ℛ(K) ≥ 0 via solving the
following optimization problem:

min

:

|| ||

( , , ) ,, , , ,

Δ
Δ

subject to
 ∞

+ + ≤R k k k k0 1 1 0 1 0 14 14 0 14 0d dL
(11)

in which Δ = (δ1, ..., δ14) and k0,1, ..., k0,14 are the
nominal parameters. The above optimization problem
determines the smallest δ such that the box Bδ(K0)
contains an element at which ℛ is non-positive. This is
equivalent to determining the largest δ such that ℛ is
positive inside Bδ(K0). The optimization problem (11)
has the following equivalent form:

min

: | | , , ,

( , ,

,

, , ,

Δ c

i

c

c i

k k k

subject to  d

d d

≤ =
+ +

1 14

0 1 1 0 1 0 14 1

L

LR 44 0 14 0k , ) ,≤

(12)

where Δ = (δ1, ..., δ14). This problem is solved numerically
employing the Sequential Quadratic Programming (SQP)
method [24]. Solving the optimization problem (12) results
in δ*=0.0051 = ||Δ*||∞, where Δ∗ ∗ ∗= ( , , )d d1 14L . Although
the SQP provides only a local optimal solution, since δ* is a
small number, we expect it to be the actual optimal solution.
To further verify that the solution is the global optimal, we
perform exhaustive search using gridding methods for the
points {k0, i - δ*k0, i, k0, i, k0, i, + δ*k0, i}. Toperformexhaustive
search we evaluate ℛ(K) for 314 values of K and determine
the minimum value. The resulting minimum value is the
same as the one obtained with the SQP.

Step 2. The solution to the optimization problem (12)
provides the optimal values of δi, i = 1, ..., 14, i.e., d i

∗ ,
which make the constraint ℛ(K) ≤ 0 active. Therefore, at
the point K̂ defined as

ˆ : [ , , ],, , , ,K k k k k= + +∗ ∗
0 1 1 0 1 0 14 14 0 14d dL (13)

which is on the boundary of the box Bδ* (K0), we have that
ℛ( K̂ ) = 0 and at least for some 1 ≤ i ≤ 14 |d i

∗ | = δ*. The
numerical values of the vector ˆ [ ˆ , , ˆ ]K k k= 1 14L are
provided in Table 4. It can be shown that at
[ ( ) , , ( ) ], , , ,k k k k0 1 1 0 1 0 14 14 0 14+ + + +∗ ∗d dε εL , with � being
sufficiently small, the linearized system around the
equilibrium is stable and the system ceases to oscillate.

Steps 3 and 4. To implement Steps 3 and 4 of
Algorithm 1, we consider Remark 1 and evalu-
ate the sign of the elements in the vector

v K a K d K d K d K d K d K( ) [ ( ), ( ), ( ), ( ), ( ), ( )= 1 1
1

1
2

1
3

1
4

1
6 for all K

in the set D defined as D := Bδ* + � (K0), where � = 0.0001.
The sign of these parameters are evaluated via solving the
following optimization problem for each function in

{ , , , , , }a d d d d d1 1
1

1
2

1
3

1
4

1
6 . This leads to the minimum value

that these functions take in Bδ* + �(K0). Defining d1
0 :=

a1, this minimum value is provided by

min

:

( , , )

| |

, , , ,Δ

subject to
 
d k k k kj

i

1 0 1 1 0 1 0 14 14 0 14+ +

≤ +∗

d d

d d

L

ε,, , , , i = 1 14L
(14)

where Δ = (δ1, ..., δ14).

The optimization problem is solved for j = 0, ..., 6
using the gradient descent method. We obtain the
minimum values 15.38, 76.13, 184.64, 225.73, 128.74,
93.87 for the functions a d d d d1 1

1
1
2

1
3

1
4, , , , and d1

6 ,
respectively. Another approach for calculating the mini-
mum value of the functions is performing exhaustive
search in the gridded space and we consider the
elements {k0, i - (δ* + �)δk0, i, k0, i, k0, i + (δ* + �)k0,
i i = 1, ..., 14}. Therefore, to perform exhaustive search
we evaluate each of the functions d j

1 , j = 0, ..., 6 for 314

elements (3 elements for each dimension) and deter-
mine the minimum value of each function. The resulting
minimum values are the same as those obtained
employing the gradient descent method.

Since in the box Bδ* + � (K0) all elements of the vector
v are positive, the conditions described in Steps 3 and
4 are verified in D = Bδ* + � (K0), according to
Remark 1.

Table 4: Elements of the vector K̂

Parameter Units Perturbed Value

k̂1
min-1 1.9898

k̂2
Mol-1min-1 0.8954

k̂3
min-1 2.5128

k̂4
min-1 1.5076

k̂5
min-1 0.5969

k̂6
Mol-1min-1 0.8041

k̂7
Mol-1min-1 1.0051

k̂8
Mol-1min-1 1.2934

k̂9
min-1 0.3015

k̂10
Mol-1min-1 0.8041

k̂11
min-1 0.6964

k̂12
min-1 4.9250

k̂13
min-1 22.8827

k̂14
min-1 4.5229
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Step 5. Evaluating ℛ(K) for K on the path {(1 - a)K0 +
a K̂ | a > 0} ∩ Bδ* + �(K0), we can show that it is negative
except for K̂ at which it is zero and Step 5 of Algorithm
1 is completed.

Therefore, all the Steps in Algorithm 1 are completed and
the system has a stable periodic orbit in the open box Bδ*

(K0) with δ* = 0.0051.

To further verify that ℛ is sufficiently small in Bδ* (K0),
we simulate the system for ℛ between zero and its
maximum in Bδ* (K0) and verify that oscillations persist
(see Appendix 3 for the details).

Application to the model of the metabolism
of activated neutrophils
The second model we consider for robustness analysis
describes the metabolism of an activated neutrophil
granulocyte. Neutrophils constitute the pivotal part of the
defence system against invading pathogens or bacteria.
Upon bacterial invasion, neutrophils leave bloodstream
and migrate actively toward the site of infection where they
absorb and kill the bacteria. The necessary antibacterial and
digestive materials are produced upon activation of the
neutrophil. The activation dramatically increases the
production of the reduced form of nicotinamide adenine
dinucleotide phosphate (NADPH) via hexose monopho-
sphate shunt and initiates the production of the NADPH
oxidase complex that assembles at the phagosomal
membrane. Electrons are transferred from cytoplasmic
NADPH to oxygen on the phagosomal side of the
membrane, generating the so-called reactive oxygen species
by creating superoxide O2

− as an intermediate step [20,12].
It is shown that in migrating neutrophils the concentration
of NADPH and reactive oxygen species oscillate [25,26]. In
this paper, we consider the model of the system that is
presented by Olsen et al. [20]. The model has 16 states and
24 parameters and it can be written as

&x f x K

R x R x R x

R x R x R x

R x R x

R

= =

− + −
− +

−

( , )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 3 4

1 2 6

2 3

4(( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
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R x R x R x R x R
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− − − − +
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+ 33 17
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⎥
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, (15)

in which the state variable x = [x1, ..., x16] represents the
concentration of the 16 species. The factor r refers to the
fractional volume of the phagosome over the cytosol and
is assumed to be 0.1. The functions R1,..., R19 represent
reaction rates and are described in Table 5 along with
nominal parameter values.

In model (15), there are only 14 independent states as
& & & &x x x x1 2 3 4 0+ + + = a nd r( )& & & &x x x x8 9 15 16 0+ + + = .
Therefore, we let

k x t x t x t x t x x x x

k
25 1 2 3 4 1 2 3 4

26

0 0 0 0: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

:

= + + + = + + +
= rxx t x t x t x t x x x x8 9 15 16 8 9 15 160 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).+ + + = + + +r r r

(16)

Substituting x1 and x16 in (15) and employing (16), we
have (with abuse of notation) the new state vector
x = [x2, ..., x15] with independent states and new
differential equation

&x f x K f= × →( , ), : ,R R R14 26 14 (17)

in which the parameter vector K Œ R26 includes all 24
parameters in Table 5 in addition to k25 and k26, which
depend on the initial concentration of the molecular
species. Assuming initial concentration of 300 μM for
ferric peroxidase (x1) and melatonin (x16) and zero for

Table 5: Reaction and rate constants of neutrophils

Reaction Rate expression (Ri) Rate constant

R1(x) k1x5x1 - k-1x2 K1 = 5.0 × 107M-1s-1

k-1 = 58s-1

R2(x) k2x2x8 k2 = 1.0 × 107M-1s-1

R3(x) k3x3x8 k3 = 4.0 × 103M-1s-1

R4(x) k4x1x6 k4 = 2.0 × 107M-1s-1

R5(x) k x5 6
2 k5 = 1.0 × 107M-1s-1

R6(x) k6x4x6 k6 = 1.0 × 105M-1s-1

R7(x) k7x10x14 k7 = 1M-1s-1

R8(x) k8x11x14 k8 = 5.0 × 107M-1s-1

R9(x) k x9 13
2 k9 = 5.0 × 108M-1s-1

R10(x) k10x16x10 k10 = 1.0 × 107M-1s-1

R11(x) k x11 11
2 k11 = 6.0 × 107M-1s-1

R12(x) k12 k12 = 3.0 × 10-5M-1s-1

R13(x) k13- k-13x14 k13 = 1.25 × 10-5M-1s-1

k-13 = 4.5 × 10-2M-1s-1

R14(x) k14(x7-x14) k14 = 30s-1

R15(x) k15(x5-x12) k15 = 30s-1

R16(x) k16(x8-x15) k16 = 10s-1

R17(x) k17(x9-x16) k17 = 10s-1

R18(x) k18(x6-x13) k18 = 0.01s-1

R19(x)
V
x
kN

x
kN

L
x
kN

x
k x

10 1 10

1 10 2
7

0 7

( )

( ( ) )

+

+ + +

V = 288 × 10-6M-1s-1

L = 550
k0 = 1.5 × 10-6M
kN = 60 × 10-6M
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the rest, we have a nominal value of 300 μM for k25 and
k26 as in [20]. Moreover, the nominal parameter vector is
defined as

K k k k k k k k V L k k k k kN0 1 1 2 13 13 14 18 0 25 26: [ , , , , , , , , , , , , , , ] : [= =− −L L 00 1 0 26, ,, , ].L k (18)

Equilibria of the system
The system model does not belong to the category of S-
systems. Therefore, we use Newton’s method to calculate
the equilibrium, xe(K), of system (15) by solving f(xe, K)
= 0 for xe. We first simulate the system with nominal
parameters K0 and choose a point on the corresponding
periodic orbit to initialize the Newton iterations to
calculate xe(K0). Then for any parameter vector K ≠ K0,
the Newton’s method is initialized by xe(K0) and the
iteration is performed to achieve xe(K).

Determining the function ℛ
The linearization of the system about the non-zero
equilibrium renders the matrix A Œ R14 × 14, which is
calculated numerically as a function of the equilibrium xe
and parameter vector K. The 14th order characteristic
polynomial of the matrix A is given (omitting the
dependence on K) by C(s) = s14 + a1s

13 + ... + a13s + a14.
Table 6 shows the Routh-Hurwitz table in which the
parameters are functions of xe and K. Using Newton’s
method, xe is calculated as a function of K and therefore the
vector v K a K d K d K d K d K( ) : [ , ( ), ( ), ( ), , ( ), ( )]= 1 1 1

1
1
2

1
12

1
13L

is also calculated as a function of K. According to equations
(5), function ℛ becomes

R( ) ( ( ) ( ) ( ) ( )).K d K d K d K d K= − −1
10

2
11

1
11

2
10 (19)

Implementation of Algorithm 1
We now apply Algorithm 1 to determine the region in
which the stable periodic orbit persists.

Step 1. We calculate the maximum value of δ such thatℛ
is positive in the interior of Bδ(K0), in which

B K K K k k k k id d d d d( ) : { | [ , , ],| | }., , , ,0
26

0 1 1 0 1 0 26 26 0 26= ∈ = + + ≤R L (20)

This problem is equivalent to solving the following
optimization problem: min ,d di

δ subject to: |δi| ≤ δ, i =
1, ..., 26 and ℛ(k0,1 + δ1k0,1, ..., k0,26 + δ26k0,26) ≤ 0.
Employing the SQP solver, we achieve δ* ≃ .17. However,
employing first Adaptive Search Algorithm [27] and then
SQP to the result of the Adaptive Search Algorithm (see
Appendix 4 for the details), we achieve δ* = .0591. HGA
and then SQP are also employed to calculate δ* which
leads to the same results as the algorithm described in
Appendix 4.

Step 2. The solution to the above optimization
problem provides the optimal values for δi, i = 1, ...,
14, i.e., d i

∗ that make the constraint ℛ(K) ≥ 0
active. Therefore, at the point K̂ defined as
ˆ : [ , , ], , , ,K k k k k= + +∗ ∗

0 1 1 0 1 0 26 26 0 26d dL in which [δ1, ...,

δ26] = 0.0591 [-1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1,
-1, -1, -1, -1, -1, 1, -1, 1, -1, 0, 0], which is on
the boundary of the box Bδ* (K0), ℛ vanishes, i.e.,

ℛ( K̂ ) = 0. It can be shown that at the point

[ ( ) , , ( ) ], , , ,k k k k0 1 1 0 1 0 26 26 0 26+ + + +∗ ∗d dε εL , with � being

sufficiently small, the linearized system about the
equilibrium is stable and the system ceases to oscillate.

Step 3. Let us consider the box Bδ* + �(K0) for
� = 0.0001. Then, in Bδ* + �(K0) the functions

a K d K d K d K1 1
1

1
2

1
10( ), ( ), ( ), , ( )L and d K1

13( ) are positive

if their minimum in the box is positive. We determine
the minimum of each of the functions in the box
Bδ* + �(K0) employing a HGA and SQP. The minimum

value of the functions a K d K d K d K1 1
1

1
2

1
10( ), ( ), ( ), , ( )L

and d K1
13( ) are found to be 172.91, 8214.8, 173070,

1.8478e + 006, 1.0279e + 007, 2.7101e + 007, 3.6251e +
007, 2.6068e + 007, 1.0073e + 007, 1.7745e + 006,
1.3174e + 004, and 5.1522e - 004, respectively.

Step 4. By defining a small neighborhood about K̂ , that
is, B.001( K̂ ), we obtain that d1

11 (K) is positive in
B.001( K̂ ) and therefore Step 4 of Algorithm 1 is
completed with N( K̂ ) := B.001( K̂ ) and D := N( K̂ ) ∩
Bδ* (K0).

Step 5. We evaluate ℛ(K) for K on the path Γ = {(1 -
aK0) + a K̂ | a > 0} ∩ Bδ* + � (K0) and confirm that it is
negative except on K̂ where ℛ is zero. Therefore, Step 5
of Algorithm 1 is completed and the largest box about K0

Table 6: Routh Hurwitz table

s14 1 a2 a4 ... a14
s13 a1 a3 a5 ... 0
s12

d1
1 d2

1 d3
1 ...

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
s3

d1
10 d2

10 0 ...

s2
d1

11 d2
11 0 ...

s1

d
d d d d

d
1
12 1

10
2
11

1
11

2
10

1
11=
−

0 0 ... 0

s0
d d1

13
2
11= 0 0 ... 0

BMC Systems Biology 2009, 3:95 http://www.biomedcentral.com/1752-0509/3/95

Page 9 of 13
(page number not for citation purposes)



in which the system has a stable periodic orbit is Bδ* (K0)
with δ* = 0.0591, provided that ℛ is sufficiently small
on Bδ* (K0).

To verify that ℛ is sufficiently small in the box Bδ* (K0),
we simulate the system for ℛ ranging from zero to the
maximum attained in Bδ* (K0) and verify that oscilla-
tions persist (see Appendix 5 for the details).

Discussion
The method introduced in this paper relies on the
computation of ℛ, that is, the scalar function of system
parameters whose sign determines the existence of the
stable periodic orbit. The robustness of the periodic
orbit of a system can be evaluated by determining the
deviation δ* from the nominal parameter values at
which the function ℛ changes sign. This deviation can
be numerically computed by employing standard
optimization techniques such as SQP and HGA. As a
consequence, this technique is computationally lighter
than multiparameter robustness analysis based on
random-search methods, in which the system is
simulated at each point in parameter space. Never-
theless, since ℛ encompasses all system parameters, this
method retains the desirable features of multiparameter
robustness analysis. Moreover, the proposed method
provides more accurate robustness measures when
compared to methods based on the linear approxima-
tion of the system about the nominal periodic orbit, as
it is shown in the first application example. The
proposed method relies on Hopf bifurcation theorem
and on the assumption that ℛ(K) is sufficiently small
for K inside the box Bδ* (K0). This guarantees that the
terms of order higher than three in the Taylor expansion
of the system on the center manifold about K̂ and
xe( K̂ ) are negligible in the box Bδ* (K0). To provide
evidence that this assumption is satisfied, we vary ℛ
from its minimum to its maximum in the box Bδ*

(K0) and verify via simulation that the periodic orbit
persists. This simulation step does not present compu-
tational limitations. It is in fact performed as one
scalar parameter (ℛ) is varied as opposed to varying
multiple parameters at once as in multiparameter
robustness analysis. The underlying assumption for
the approach presented in this paper to provide a
tight bound on the robustness of the system is that the
nominal periodic orbit of the system originates from a
Hopf bifurcation. If this were not the case, the provided
bound would not necessarily be meaningful as other
types of bifurcations may be responsible of the birth
and death of the periodic orbit. Therefore, the approach
of this paper is generally applicable and restricted to
those natural oscillatory systems exhibiting Hopf
bifurcation.

For the Laub and Loomis model, previous work employing
HGA, in which the system is simulated at each point in
parameter space, the robustness of the system was deter-
mined as 0.6% [9]. Employing the method proposed in this
paper, the robustness of the system has been determined as
δ* = 0.51%. This bound is tight, as the system ceases to
oscillate at a combination of parameters that is away from
the nominal valueK0 only slightlymore than δ*. This bound
is therefore tighter than the one found employing μ analysis
or global/hybrid optimization methods.

For the model of the oscillatory metabolism of activated
neutrophils, previous work only performed one-para-
meter-at-a-time variation [12]. According to this single
parameter variation analysis, the minimum deviation
from nominal values of parameters which causes the
periodic orbit to disappear is 16.67%. By contrast,
employing the method proposed in this paper, the
robustness of the system has been quantified as δ* =
5.91%. This bound is tight as a combination of
parameters that is away from the nominal point K0

slightly more than δ* has been determined at which the
system ceases to oscillate. This result shows that the
oscillatory behavior of this model is not as robust with
respect to parameter variation as it was perceived.

Conclusion
The robustness analysis of bio-molecular systems is an
important problem in systems and synthetic biology.
Previously, the robustness of a system with respect to
parameter variations has been investigated by employing
μ analysis on the linearized system about nominal
periodic orbit or by applying HGA, in which the system
is simulated for each combination of parameter values.
In this paper, a method based on the combined
application of Hopf bifurcation and Routh-Hurwitz
stability criterion is introduced. We computed a scalar
function of all system parameters whose sign determines
the existence of a stable periodic orbit. This method is
applied to two bio-molecular systems: the Laub and
Loomis model and the model of the oscillatory
metabolism of activated neutrophils. The maximum
allowed parameter variation with respect to nominal
values under which the system preserves oscillatory
behavior is calculated. For the Laub and Loomis model,
the computed maximum allowed variation is tighter
than what was obtained with previous multiparametric
analysis methods. For the model of activated neutro-
phils, only single parameter variations were considered
in the literature to evaluate parametric robustness.
Employing the method proposed in this paper, we
evaluate the robustness of the system to be about one
third of the one estimated in the literature employing
single parameter variations.
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Appendix
Appendix 1
The following result gives conditions for which -T(K) can
be taken as an R-function.

Claim 1. Assume that for all K Œ D,

(a) a0(K), a1(K), d1
1 (K), ..., dn

1
4− (K) and dn

1
1− (K) are

positive;

(b) K Œ D ∩ {K | T(K) ≥ 0} implies that dn
1

3− (K) > 0.

Then ℛ(K) = -T(K) is an R-function.

Proof. If T(K) = dn
1

2− (K) dn
1

3− (K) < 0 for K Œ D, then
when K Œ Bδ* (K0) either dn

1
2− (K) is positive and

dn
1

3− (K) is negative or viceversa. Therefore, given (a),
there are always two changes of sign in the vector v(K) in
(6) for all K Œ D. Hence, according to Routh-Hurwitz
criterion, there are two eigenvalues with positive real part
while all the others have negative real part in D.
Therefore, ℛ(K) = -T(K) satisfies property (ii). According
to condition (b), T(K) = 0 implies dn

1
3− (K) > 0 and

dn
1

2− (K) = 0. Therefore, from the Routh-Hurwitz
criterion, there are two imaginary eigenvalues and all
the others have negative real part. As a consequence, ℛ
(K) = -T(K) satisfies property (i).

According to (b), if T(K) > 0 when K Œ D, then dn
1

3− (K)
> 0. This, along with condition (a), implies by Routh
Hurwitz criterion that all eigenvalues of A(K) have
negative real parts. Consequently, ℛ(K) = -T(K) satisfies
property (iii).

Appendix 2
Let us denote by x K x xe

T( ) [ , , ]= 1 7L an equilibrium of
the system, that is, f(xe(K), K) = 0. From the 7th and 6th

differential equations of the model in equation (7), we
have

x
k
k

x x
k
k

x7 6 6 1
13
14

11
12

= =, , (21)

and therefore

x
k k
k k

x7 1
13 11
14 12

= . (22)

Substituting expression (22) in the first differential
equation of (7), we have the following result

x1 0= (23)

or

x
k k k
k k k2

1 11 13
2 14 12

= . (24)

Equation (23) and f(xe(K), K) = 0 imply that

x x x x x

x x
k
k

1 2 5 6 7

3 4

0

7
8

= = = = =

=

 and

.
(25)

For the nonzero equilibrium, from equation (24) we
have that

x
k
k

k k k
k k k5

4
3

1 11 13
2 14 12

= ⋅ . (26)

From the 3rd differential equation of (7), equation (22)
and equation (24), we obtain that

x
k k
k k

x3 1
2 5
1 6

= . (27)

From the 5th differential equation of (7) and equation
(26), we have that

x
k k k k k
k k k k k

x4 1
9 3 2 4 12

10 4 1 11 13
= ⋅ . (28)

Substituting equations (27) and (28) in the 4th
differential equation of the equation (7), we have that

x
k k k k k k
k k k k k k

k
k1

1 2
10 4 6 7 11 13
9 3 5 8 14 12

1
2

=
⎛

⎝
⎜

⎞

⎠
⎟ ⋅

/

. (29)

Employing equation (29) in equations (21), (22), (27)
and (28) we have that
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x
k k k k k k
k k k k k k3

1 2
10 4 5 7 11 13
9 3 6 8 14 12

=
⎛

⎝
⎜

⎞

⎠
⎟

/

(30)

x
k k k k k k
k k k k k k4

1 2
9 3 6 14 12 7

10 4 5 11 13 8
=

⎛

⎝
⎜

⎞

⎠
⎟

/

(31)

x
k k
k k

k k k k k k
k k k k k k6

1 2
1 11
2 12

10 4 6 7 11 13
9 3 5 8 14 12

= ⋅
⎛

⎝
⎜

⎞

⎠
⎟

/

(32)

x
k k k
k k k

k k k k k k
k k k k k k7

1 2
13 11 1
14 12 2

10 4 6 7 11 13
9 3 5 8 14 12

=
⎛

⎝
⎜

⎞

⎠
⎟

/

. (33)

Therefore, the system has two equilibrium points. One is
determined by equation (25), which we do not consider
for Hopf bifurcation, because negative values for the
states x1, ..., x7 would result from oscillations and protein
concentration is always positive. The other non-zero
equilibrium, employed next, is [ , , , , , , ]x x x x x x x1 2 3 4 5 6 7
determined by equations (24-26-29-30-31-32-33).

Appendix 3
In order to perform this one-dimensional parameter
study, we define a path in parameter space along which
ℛ changes from zero to its maximum value in the box
Bδ* (K0) monotonically. In the following, we show that
ℛ is monotonically increasing with respect to parameter
k1 in Bδ* (K0). Therefore, the path is created by varying k1
from zero at K̂ to the point at which ℛ reaches its
maximum value, while keeping all other parameters
constant to the values taken at K̂ .

To check the monotonicity of the function ℛ with
respect to k1 over the box Bδ* (K0), we first define a new
function H as follows

H K
K

K( ) ( ),= − ∂
∂ 1
R (34)

in which K = [k1, ..., k14]. Then, we define the following
optimization problem

min

:

( , , )

| | ,

, , , ,Δ

subject to
 

 

H k k k k

ii

0 1 1 0 1 0 14 14 0 14+ +

≤ =∗

d d

d d

L

11 14, , ,L
(35)

in which Δ = [δ1, ..., δ14]. Employing the gradient descent
method, we obtain the maximum value of H(K) over the
box Bδ* (K0) as -24.9152. Therefore, ∂

∂k1
ℛ(K) is

positive over the box Bδ* (K0), which implies that ℛ is
monotonically increasing with respect to k1.

The maximum value of ℛ in the box Bδ* (K0) is
computed by solving the following optimization
problem

min

:

( , , )

, ,

, , , ,Δ

subject to
 

 

R k k k k

ii

0 1 1 0 1 0 14 14 0 14

1

+ +

≤ =∗

d d

d d

L

LL , ,14
(36)

where Δ = [δ1, ..., δ14]. This problem is solved again
through the gradient decent method. Denoting R̂ the
solution of (36), we have that R̂ = 4.9828. By varying
parameter k1, we thus simulate the system for ℛ Œ [0,

R̂ ]. Simulation results show that the system has a
periodic orbit for 0 < ℛ≤ R̂ .

Appendix 4
Consider the optimization problem min ,d di

δ subject to:
|δi| ≤ δ, i = 1, ..., 26 and ℛ(k0,1 + δ1k0,1, ..., k0,26 +
δ26k0,26) ≤ 0. We adopt the following solution:

1 Set δl = 0.17, l = 1, Kinit = K0.

2 We consider the following optimization problem

min ( , , )

: | | ,

, , , ,d d

d d
i

k k k k k

ii
l

R 0 1 1 0 1 0 26 26 0 26

1

+ +

≤ =

L

subject to ,, , .L 26

We solve this optimization problem using the direct search
method of the Genetic Algorithm toolbox of Matlab, with
mesh adaptive search algorithm [27], using the initial guess
Kinit. The solution is taken as an initial guess for SQP and
the solution provided by SQP is considered as the solution
of the above optimization problem. If at the optimal point

K k k k kl l l= + +[ , , ], , , ,0 1 1 0 1 0 26 26 0 26d dL , ℛ(Kl) is non-

negative, terminate.

Figure 4
Variation of function ℛ(K) with a.
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3 Determine 0 <a ≤ 1 such that ℛ(aK0 + (1 - a)Kl) = 0
(using methods such as bisection [23]).

4 Set Kinit = aK0 + (1 -a)Kl, l = l + 1 and

d l
i

K init i K i
K i

= =
−

max , ,
( ) ,

,1 26
0

0L .

5 Go to 2.

Appendix 5
In order to perform this one-dimensional parameter
study, we define a path on whichℛ changes from zero to
its maximum value in the box Bδ* (K0) monotonically.
Therefore, we first determine the maximum value of ℛ
in the box Bδ* (K0) by employing HGA and SQP. The
maximum value of ℛ is achieved at K = k0,1 + δ1k0,1, ...,
k0,26 + δ26k0,26 with

[ , , ] . [ ]d d1 26 0 05911 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0L = − − − − − −

and it is 18665. We vary the value of ℛ from zero at K̂
to its maximum at K by varying a from zero to one in
(1 - a) K̂ + a K . Figure 4 shows the variation of ℛ with
respect to a.

In order to simulate the system over different values of
ℛ, we vary the value of a from 0 to 1 at 855 points such
that ℛvaries of at most 20 at each step. The simulation
results show that the system has a periodic orbit over the
interval 0 < ℛ < 18665.
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