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Abstract

Optimization aims to make a system or design as effective or functional as possible. Mathematical
optimization methods are widely used in engineering, economics and science. This commentary is
focused on applications of mathematical optimization in computational systems biology. Examples
are given where optimization methods are used for topics ranging from model building and optimal
experimental design to metabolic engineering and synthetic biology. Finally, several perspectives for

future research are outlined.

Background

To optimize means to find the best solution, the best com-
promise among several conflicting demands subject to
predefined requirements (called constraints). Mathemati-
cal optimization has been extremely successful as an aid
to better decision making in science, engineering and eco-
nomics.

Optimization and optimality are certainly not new con-
cepts in biology. The structures, movements and behav-
iors of animals, and their life histories, have been shaped
by the optimizing processes of evolution or of learning by
trial and error [1,2]. Moreover, optimization theory not
only explains current adaptations of biological systems,
but also helps to predict new designs that may yet evolve
[1,2]. The use of optimization in the close fields of com-
putational biology and bioinformatics has been reviewed
recently elsewhere [3,4]. Here, I aim to illustrate the capa-
bilities, opportunities and benefits that mathematical
optimization can bring to research in systems biology.

First, I will introduce several basic concepts that can help
readers unfamiliar with mathematical optimization. The
key elements of mathematical optimization problems are
the decision variables (those which can be varied during the

search of the best solution), the objective function (the per-
formance index which quantifies the quality of a solution
defined by a set of decision variables, and which can be
maximized or minimized), and the constraints (require-
ments that must be met, usually expressed as equalities
and inequalities). Decision variables can be continuous
(represented by real numbers), resulting in continuous opti-
mization problems, or discrete (represented by integer
numbers), resulting in integer optimization (also called
combinatorial optimization) problems. In many instances,
there is a mix of continuous and integer decision varia-
bles.

As an illustrative example, consider the "diet problem",
one of the first modern optimization problems [5], stud-
ied in the 1940s: to find the cheapest combination of
foods that will satisfy all the daily nutritional require-
ments of a person. In this classical problem, the objective
function to minimize is the cost of the food, the decision
variables are the amounts of each type of food to be pur-
chased (assumed as continuous variables), and the con-
straints are the nutritional needs be satisfied, like total
calories, or amounts of vitamins, minerals, etc., in the
diet.
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The "diet problem" has certain interesting properties: it is
a continuous problem where both the objective function
(total cost, i.e. sum of the costs of each food purchased)
and the constraints are linear with respect to the decision
variables, so this problem belongs to the important class
of linear programming, or LP (note that due to historical
reasons, programming is used here in the sense of plan-
ning). These linear constraints define a feasible space
(space of decision variables where constraints are satis-
fied) which is a convex polyhedron, so it is a convex prob-
lem. Convex optimization problems [6] are particularly
interesting, since they have a unique solution (i.e. they are
unimodal) and they can be solved very efficiently and reli-
ably, even for very large number of decisions variables.

Non linear programming (NLP) deals with continuous
problems where some of the constraints or the objective
function are nonlinear. In contrast to LP, NLP problems
are much more difficult to solve. Further, the presence of
nonlinearities in the objective and constraints might
imply nonconvexity, which results in the potential exist-
ence of multiple local solutions (multimodality). Thus, in
nonconvex problems one should seek the globally opti-
mal solution among the set of possible local solutions.
For the simple case of only two decision variables, one can
visualize the objective function of a multimodal problem
as a terrain with multiple peaks. Simple examples of uni-
modal and multimodal surfaces are presented in Figure 1.

The solution of multimodal problems is studied by the
subfield of global optimization [7-10]. Many continuous
problems and the vast majority of combinatorial optimi-
zation problems belong to this class. Most problems in
global optimization are very hard to solve exactly in a rea-
sonable computation time. Fortunately, recent develop-
ments indicate that convex optimization problems are
more prevalent in practice than was previously thought
[6]. Thus, it is highly desirable to formulate (or re-formu-
late) the statement of any optimization problem as a con-
vex one. The book by Boyd and Vandenberghe [6] gives
detailed information on how to recognize, formulate, and
solve convex optimization problems.

Model-based optimization is a key methodology in engi-
neering, helping in the design, analysis, construction and
operation of all kind of devices. Since engineering
approaches are playing a significant role in the rapid evo-
lution of systems biology [11-14], it is expected that math-
ematical optimization methods will contribute in a
significant way to advances in systems biology.

In fact, optimization is already playing a key role. Exam-
ples of applications of optimization in systems biology,
classified by the type of optimization problem, are given
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in Table 1. Below, I highlight several topics where optimi-
zation has already made significant contributions.

Optimization of biochemical reaction networks

Optimization methods have been applied in both meta-
bolic control analysis [15,16] and biochemical systems
theory [17]. Further, optimization (and, more in particu-
lar, linear programming) has been the engine behind met-
abolic flux balance analysis, where the optimal flux
distributions are calculated using linear optimization, and
are used to represent the metabolic phenotype for certain
conditions. This flux balance methodology provides a
guide to metabolic engineering and a method for bioproc-
ess optimization [18]. Examples of success stories are the
in silico predictions of Escherichia coli metabolic capabili-
ties [19], or the genome-scale reconstruction of the Sac-
charomyces cerevisiae metabolic network [20].

Metabolic engineering exploits an integrated, systems-
level approach for optimizing a desired cellular property
or phenotype [21]. New optimization-based methods are
being developed by using genome-scale metabolic mod-
els, which enable identification of gene knockout strate-
gies for obtaining improved phenotypes. However, these
problems have a combinatorial nature, so the computa-
tional time increases exponentially with the size of the
problem for exact methods, so there is a clear need of
developing approximate yet faster algorithms [22]. Not
surprisingly, optimization will also help in the bioengi-
neering of novel in vitro metabolic pathways using syn-
thetic biology, as the key component in rational redesign
and directed evolution [23-26].

Coupling constraint-based analysis with optimization has
been used to generate a consistent framework for the gen-
eration of hypotheses and the testing of functions of
microbial cells using genome-scale models [27]. Exten-
sions and modifications of flux balance analysis continue
to use optimization methods extensively [28-32].

A particularly interesting question in this context concerns
the principles behind the optimal metabolic network
operation, i.e. "which are the criteria (objective functions)
being optimized in these networks?", a question which
has been addressed in detail recently [33,34]. Constrained
evolutionary optimization has also been used to under-
stand optimal circuit design [35]. Moreover, optimization
principles have also been used to explain the complexity
and robustness found in biochemical networks [36-38],
and much more wortk in this topic is to be expected in the
near future. Related to this, the hypothesis that metabolic
systems have evolved optimal strategies as a result of evo-
lutionary pressures has been used in cybernetic models
[39], an approach which may offer advantages over tradi-
tional methodologies.
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Figure |
Simple examples (two decision variables, no constraints) of unimodal (1.2) and multimodal (1.b) surfaces,

where the z-coordinate of the surface represents the value of the objective function for each pair of decision
variables x and y.
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Table I: Examples of applications of optimization in systems biology, classified by type of optimization problem (note that several

types overlap)

Problem type or application

Description

Examples with references

Linear programming (LP)

Nonlinear programming (NLP)

Semidefinite programming (SDP)

Bilevel optimization (BLO)

linear objective and constraints

some of the constraints or the objective
function are nonlinear

problems over symmetric positive semidefinite
matrix variables with linear cost function and
linear constraints

objective subject to constraints which arise
from solving an inner optimization problem

maximal possible yield of a fermentation [83];
metabolic flux balancing [18,83]; review of flux
balance analysis in [30]; use of LP with genome
scale models reviewed in [27]; inference of
regulatory networks [40,42]

applications to metabolic engineering and
parameter estimation in pathways [69];
substrate metabolism in cardiomyocytes using
13C data [84]; analysis of energy metabolism
[85]

partitioning the parameter space of a model
into feasible and infeasible regions [86]

framework for identifying gene knockout
strategies [87]; optimization of metabolic

Mixed integer linear programming (MILP)

Mixed integer nonlinear programming (MINLP)

Parameter estimation

Dynamic optimization (DO)

decision variables)

Mixed-integer dynamic optimization (MIDO)

linear problem with both discrete and
continuous decision variables

nonlinear problem with both discrete and
continuous decision variables

model calibration minimizing differences
between predicted and experimental values

Optimization with differential equations as
constraints (and possible time-dependent

Optimization with differential equations as

pathways under stability considerations [88];
optimal profiles of genetic alterations in
metabolic engineering [89]

finding all alternate optima in metabolic
networks [90,91]; optimal intervention
strategies for designing strains with enhanced
capabilities [91]; framework for finding
biological network topologies [47]; inferring
gene regulatory networks [41]

analysis and design of metabolic reaction
networks and their regulatory architecture
[92,93]; inference of regulatory interactions
using time-course DNA microarray expression
data [45]

tutorial focused in systems biology [53];
parameter estimation using global and hybrid
methods [52,54,55,59,70]; parameter
estimation in stochastic models [58]
discovery of biological network design
strategies [94]; dynamic flux balance analysis
[29]; optimal control for modification of self-
organized dynamics [95]; optimal experimental
design [66]

computational design of genetic circuits [76]

constraints and both discrete and continuous
decision variables (possibly time-dependent)

Reverse engineering, modeling and
experimental design

Reverse engineering in systems biology aims to recon-
struct the biochemical interactions from data sets of a par-
ticular biological system. Optimization has been used for
inferring important biomolecular networks, such as e.g.
transcriptional regulatory networks [40], gene regulatory
networks [41-46], signaling pathways [47] and protein
interaction networks [48,49].

System identification [50,51] is a methodology widely
used in engineering for building mathematical models of
dynamical systems based on measured data. Roughly, this
involves selected the structure of the model and estimat-
ing the parameters of such model from the available
experimental data.

The problem of parameter estimation in biochemical
pathways, formulated as a nonlinear programming prob-
lem subject to the pathway model acting as constraints,
has also received great attention [52-59]. Since these prob-
lems are frequently multimodal, global optimization
methods are needed in order to avoid local solutions. A
local solution can be very misleading when calibrating
models: it would indicate a bad fit even for a model which
could potentially match perfectly a set of experimental
data.

Since biological experiments are both expensive and time
consuming, it would be ideal if one could plan them in an
optimal way, i.e. minimizing their cost while maximizing
the amount of information to be extracted from such
experiments. This is the purpose of optimal experimental
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design and optimal identification procedures [60-66], a
topic which can make a great impact in the near future,
especially in connection with high-throughput tech-
niques.

Conclusion

Although, as already mentioned, it would be desirable to
formulate all the optimization problems as convex ones,
in many occasions this is not possible, so we face the solu-
tion of global optimization problems, most of which
belong to the class of NP-hard problems [67], where
obtaining global optima with guarantees will be impossi-
ble in many instances. In these situations, approximate
techniques like stochastic global optimization can at least
locate a near globally optimal solution in a reasonable
time, although the cost to pay is that these methods do
not offer full guarantees of global optimality. In this con-
text, evolutionary computation methods are a class of sto-
chastic methods which have shown good performance in
systems biology applications [55,67-69]. Hybrid meth-
ods, combining global and local techniques, have also
shown great potential with difficult problems like param-
eter estimation [54,59,70]. Much more work is needed to
further enhance the efficiency and robustness of these
approaches in order to make then applicable to large scale
models.

Another important issue is the stochasticity that is inher-
ent in biomolecular systems [71,72]. This stochastic
nature requires advances in optimization methods, and a
number of researches are already providing useful
approaches, such as in parameter estimation in stochastic
biochemical reactions [58] or in the optimization of sto-
chastic gene network models [73].

As stated in [74], it would be desirable to have computer-
aided design tools for biological engineering, similarly to
what already happens in many other areas of engineering.
Such software would guide the improvement of the
behaviour of a biological system in silico by optimizing
design parameters targeting a selected objective function.
The optimization of such synthetic biological systems is in
fact receiving increasing attention: optimization algo-
rithms could search for the components (promoters,
operators, regulatory proteins, inducers, etc.) and find the
best configurations optimizing the dynamic behaviour
according to predefined design objectives [75]. A promis-
ing example of what can be done is the OptCircuit frame-
work [76], which can be used as an optimization-based
design platform to aid in the construction and fine tuning
of integrated biological circuits. Other researches are
adapting the workflow developed by the electronics
industry to the design and assembly of very large scale
integrated genetic systems, claiming that the computer
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assisted design and fabrication of genetic systems will be
a reality by 2012 [77].

Moreover, optimization could also be used after the
design and construction phases, inside a model predictive
control framework [78], to optimally manipulate the
resulting biological systems. This is the dream of meta-
bolic engineering [26,79] and synthetic biology
[21,25,74]. We are still not there, but the purpose of this
paper has been to show that we are getting close. Several
issues must be addressed before we reach that goal. First,
we need robust and efficient methods for optimization
under uncertainty, and for the optimization of stochastic
models, that are also able to scale-up, hopefully even at
the level of genome-scale models. Second, since neither
we nor nature rarely have a single objective, we need mul-
ticriteria optimization methods that are better able to
cope with the scale and complexity of models from sys-
tems biology [80].

Finally, it should be recognized that standard optimiza-
tion can be sometimes insufficient for gaining deeper
insights regarding certain aspects of systems biology, such
as in the evolution of biological systems. While evolving
towards optimal properties, the environment may change
or organisms may even change their own environment,
which in turn alters the optimum. In an evolutionary sys-
tem, continuing development is needed so as to maintain
its fitness relative to the systems it is co-evolving with. In
other words, everyone has to keep improving in order to
survive, which is known as the "Red Queen" effect [81].
Thus, game-theoretic approaches, such as evolutionary
game theory [82], may provide a better framework study-
ing the evolution of biochemical systems.

Sutherland [2] claims that, in a context of increasing calls
for biology to be predictive, optimization is the only
approach biology has for making predictions from first
principles. This claim is substantiated by an increasing
body of research. We should expect, therefore, even wider
use of optimization theory and practice in systems biol-

ogy.
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