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Abstract
Background: In recent years, stochastic descriptions of biochemical reactions based on the
Master Equation    (ME) have become widespread. These are especially relevant for models
involving gene regulation. Gillespie’s    Stochastic Simulation Algorithm (SSA) is the most widely
used method for the numerical evaluation of these    models. The SSA produces exact samples from
the distribution of the ME for finite times. However, if the    stationary distribution is of interest,
the SSA provides no information about convergence or how long the    algorithm needs to be run
to sample from the stationary distribution with given accuracy.  

Results: We present a proof and numerical characterization of a Perfect Sampling algorithm for
the ME of    networks of biochemical reactions prevalent in gene regulation and enzymatic catalysis.
Our algorithm combines    the SSA with Dominated Coupling From The Past (DCFTP) techniques
to provide guaranteed sampling from    the stationary distribution. The resulting DCFTP-SSA is
applicable to networks of reactions with uni-molecular    stoichiometries and sub-linear, (anti-)
monotone propensity functions. We showcase its applicability studying    steady-state properties
of stochastic regulatory networks of relevance in synthetic and systems biology.

Conclusion: The DCFTP-SSA provides an extension to Gillespie’s SSA with guaranteed sampling
from the    stationary solution of the ME for a broad class of stochastic biochemical networks.

Background
Recent experiments on gene and enzyme activity at single
cell resolution have revealed the inherent randomness of
key cellular processes linked to gene expression [1-3]. The
experiments show that populations with identical geno-
types present heterogeneous phenotypes and that noise at
the molecular level, due to low copy numbers, contributes
to population diversity. For mathematical models to cap-
ture this variability, a stochastic description is required.

Stochastic models in Computational Biology are usually
based on the Master Equation (ME) of the chemical reac-
tion kinetics [4-6]. Formally, the ME is a differential form
of the Chapman-Kolmogorov equation, which gives the
time evolution of P(x, t), the probability of the state of the
system x. Only a handful of analytical solutions of the ME
have been found and one must usually resort to approxi-
mations or numerical solutions. The most popular
numerical procedure is Gillespie's Stochastic Simulation
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Algorithm (SSA) [7,8], a kinetic Monte Carlo algorithm
that provides exact stochastic realizations of the underly-
ing system of reactions. Each run of the SSA produces a
time trace for the system; a collection of independent runs
can be used to obtain convergent statistics of the time-
dependent solution of the ME. In many situations, one is
interested in the steady state properties of the system, i.e.,
in the stationary distribution of the ME, π. Although in
principle π could be obtained as the first left eigenvector
of the transition matrix, this computation is infeasible for
most problems of interest due to the combinatorial explo-
sion of the state space [9]. To circumvent this problem, it
has become customary to sample π by running the SSA for
a 'very long time', convincing oneself through different
heuristics that stationarity has been attained. However,
the SSA does not provide guarantees or information about
how long the algorithm must run to converge to π. In
recent years there has been an increased interest in finding
algorithms which can address the issue of sampling from
stationarity, e.g., a strategy based on forward flux sam-
pling [10].

In a seminal paper in the field of Markov Chain Monte
Carlo, Propp and Wilson introduced the idea of Coupling
From The Past (CFTP), an ingenious procedure that pro-
vides guaranteed sampling from the stationary distribution
of a Markov chain by running coupled chains from all
possible initial conditions from the past [11]. Algorithms
that guarantee sampling from the stationary distribution
of a Markov chain are referred to as Perfect Sampling algo-
rithms [11-14]. Recently [15], we introduced a Perfect
Sampling algorithm for the SSA of biochemical networks
based on Kendall's Dominated CFTP (DCFTP) [13]. This
paper expands on our previous work by providing an
explicit implementation of the algorithm together with a
mathematical proof of its applicability to a class of reac-
tions prevalent in models of gene regulation. We also
study its numerical properties through a series of
expanded examples drawn from Systems and Synthetic
Biology.

Preliminaries and definitions
Dominated Coupling From The Past (DCFTP)
We give here a brief introduction to the CFTP framework
(see [11-13] for full proofs).

The central idea behind CFTP is to find a time in the past
such that the whole state space is mapped to the same
state at the present, for a given sequence of random num-
bers. When that occurs, the state at the present can be con-
sidered to be a sample of the stationary distribution. More
formally, consider a Markov process defined by the transi-

tion rule Xt+1 = ϕ(Xt), where Xt ≡ x(t) is shorthand for the

state of the system at time t. Any Markov chain

, started from t = -∞ will have

reached stationarity at time t = -T. If a chain with an
unknown value X-T is continued to run until t = 0, it will

attain a value X0 = ϕT (X-T), which also comes from the sta-

tionary distribution. The CFTP algorithm searches for a

time -T such that the composite function ϕT (X-T) has a

unique image for all arguments X-T. This implies that the

chain started at -T is equivalent to a chain started from t =

-∞, since it will reach the same state X0 regardless of its

value at t = -T. Hence the sample X0 comes from the sta-

tionary distribution. Starting from the past and running
into the present might seem counterintuitive and unnec-
essarily complicated. However, it is key for the algorithm
to work and it can be shown that starting at t = 0 and cou-
pling into the future will not guarantee that the samples
are unbiased.

For large state spaces it is infeasible to monitor all initial
conditions at time -T. However, this can be done effi-
ciently if one can find a partial ordering over the state
space that is preserved by the transition rule [12]:

where  denotes the partial order, i.e., a binary relation

which is reflexive, anti-symmetric and transitive, although
it does not necessarily satisfy total comparability. Under
these conditions, the whole state space can be monitored
by checking for the coalescence of coupled Markov chains
started at the upper and lower extremes of the state space
[11,16].

Two Markov chains are said to be coupled if they use the
same sequence of random numbers and the same transi-
tion rule but are started from different initial conditions.
Coupled chains that meet at a time Tc are said to coalesce
and will have identical states for t > Tc. A necessary (but
not sufficient) condition for the preservation of the partial
ordering is that the transition function is either monotone
or anti-monotone:

for coupled chains X and Y. If the partial order is pre-
served, we can monitor only the paths started at the
'extremes' of the state space, since all the paths in between
remain bounded by them. We therefore define upper and

X X X−
−∞

−∞ −≡T T{ ,..., }

X Y X Yt t s s s t‘ ‘⇒ ∀ ≥, ,

‘

Monotonic t t t t: ( ) ( )X Y X Y‘ ‘⇒φ φ
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a lower coupled Markov chains that enclose all other
paths:

where , ∀x.

The preservation of the partial order implies two impor-
tant properties for coupled chains:

Sandwiching: all paths started between L and U will have
coalesced by the time L and U do,

Funneling: all paths will get closer if they are started further
back into the past,

If the state space is unbounded from above, we need to
use Kendall's DCFTP construction. DCFTP works by intro-
ducing a time-evolving dominating process D with
known stationary distribution, which provides a random
upper bound to the state space. The original process X can
then be generated as an adapted functional  of the
dominating process and a mark process M:

The mark process generates a uniform random number
each time D is changed. These marks are used to update
the original process X according to the adapted functional
(3) in a process that is equivalent to the direct simulation
of X [12]. Heuristically, the DCFTP scheme works as fol-
lows. Since the dominating process is started from the sta-

tionary distribution at t = -T,  is equivalent to a

process started from t = -∞. By the funneling property, all

chains from the original process started from t = -∞ will be

beneath the dominating process: . If we set U-

T = D-T and L-T =  and check that these two extreme paths

coalesce, then all chains started from t = -T map to the
same state at t = 0, due to the sandwiching property. It

then follows that  is equivalent to  and the sam-

ple comes from the stationary distribution of X, due to the
equivalence of the adapted functional and the original
process. Note that if D can be chosen to be a constant

process equal to the maximal element of the state space,
we obtain the CFTP algorithm [13].

These results are summarized in the following theorem
for general DCFTP algorithms [12,13]:

Theorem 1 (DCFTP) Consider a stationary dominating proc-

ess D, for which is an ergodic atom, and an associated ran-
dom mark process M. Suppose that the processes

are produced from D and M according to the

adapted functional (3) so that the sandwiching and funneling
properties (1)–(2) are fulfilled. Suppose further that X con-

verges weakly to an invariant distribution π as t → ∞. Then L
and U will coalesce almost surely in finite time and, if coales-
cence is achieved, L0 = U0 is a sample from the stationary dis-

tribution π.

Proof See [13].

Stochastic Simulation Algorithm (SSA)
This section presents briefly the classic Gillespie algorithm
(SSA) for the exact simulation of the Master Equation of
chemical reaction networks [7].

Definition 2 (Chemical reaction network) A system of
chemical reactions is fully specified by the tuple

, where  = {S1,...,Sm} is a set of m different

molecular species interacting through r reaction channels  =
{R1,...,Rr}. Each reaction Ri is described by a stoichiometry vec-

tor νi, which gives the change in the number of molecules of all

species when reaction Ri occurs, and a propensity function

Φi(x), which gives the state-dependent probability that reaction

Ri occurs. The state of the system is given by Xt ≡ x(t) =

(x1(t),...,xm(t)) ∈ �m, where each component xi(t) indicates

the number of molecules of Si at time t.

Under the assumption that the molecules are confined to
a well-stirred volume and held at constant temperature,
we can formulate a ME governing the evolution of the sys-
tem [7]:

The ME is a conservation equation for the probability dis-
tribution and the right hand side accounts for the rate of
change of the probability of finding the system in state x.
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A general procedure to obtain exact realizations of Markov
processes first suggested by Doob [17] was applied to
chemical reactions by Gillespie in his celebrated Stochas-
tic Simulation Algorithm [7]:

Algorithm 3 (SSA) Given a chemical reaction network

, as in Definition 2, with initial state and

stopping time Ts:

k ← 0

loop

k ← k + 1

Vk,  ~ U(0, 1)

for i = 1 to r do

end for

tk ← tk-1 - (1/θr) log Vk

if tk > Ts then

return 

else

end if

end loop

A run of the SSA uses the uniform random numbers V, V'

to generate a random sequence of reactions ℜ =

, taking place at the random transition times

{t1,...,tn} such that tn <Ts <tn+1. The path

 is an exact stochastic realization

of Eq. (4). Note that the sequence of reactions ℜ uniquely

determines . For convenience, we have committed a

slight of abuse of notation when using real valued indices

to denote the state  and reaction  taking place at

time tk.

Henceforth, we represent compactly the SSA Markov proc-
ess implemented by Algorithm 3 as:

For an arbitrary initial state , repeated runs of the SSA

will produce convergent estimates (in the Monte Carlo

sense) of the distribution P(x, t| , t0), ∀t ∈ [t0, Ts] [8].

However, if one is interested in the stationary distribution

π, running the SSA repeatedly from different initial condi-
tions for a finite time Ts does not guarantee that P(x, Ts)

will converge to π, unless the starting points  are

themselves drawn from π. Our Perfect Sampling algo-
rithm addresses this issue.

Proof of the DCFTP-SSA for a class of networks 
of biochemical reactions
Viewing the SSA as the Markov process described by (5),
we have developed a specific DCFTP algorithm that pro-
vides guaranteed sampling from the stationary distribu-
tion of the corresponding chemical ME [15]. We now
provide a rigorous proof and an explicit implementation
of the DCFTP-SSA for an important class of biochemical
reactions relevant in gene regulation.

Partial ordering
We use the Pareto dominance relation, frequently used in
economics, which is defined componentwise:

Lemma 4 (Partial order) Given x, y ∈ �m, the relation

if xi ≥ yi, ∀i is a partial order.

Proof The proof follows trivially from the properties of
natural numbers:

Reflexivity: ∀xi ∈ �, xi ≥ xi, whence 

Anti-symmetry: ∀xi, yi ∈ �, if xi ≥ yi and yi ≥ xi then xi = yi.

This means that  and  implies x = y

Transitivity: ∀xi, yi, zi ∈ �, if xi ≥ yi and yi ≥ zi then xi ≥ zi. And

the same property applies to the vectors:  and

 implies . �

Assumptions on the reaction network
Consider a system of chemical reactions as given by Defi-
nition 2 with state vector x(t) ∈ �m. To guarantee the pres-
ervation of the Pareto partial order under the SSA Markov
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process (5), we restrict ourselves to a class of chemical net-
works with the following properties:

(a) all reactions are uni-molecular birth-death processes
with non-zero propensities, i.e., each reaction Ri will only
modify one species Sj by adding or subtracting one mole-
cule. The reactions can be divided into two subsets:

(b) the system must be chemically reversible, i.e., every reac-
tion must be reversible leading to an irreducible Markov
process

(c) all death reactions must be linear, i.e.

Φi = kjxj for Ri ≡ Xj → ∅

(d) all birth reactions must have (anti-)monotonic, sub-lin-
ear propensity functions, i.e., ∀i, j, ∀x: ∂Φi(x)/∂xj does not
change sign and Φi can be bounded by a linear function
(or a constant).

As shown below, the last two assumptions are related to
domination by a linear network which is required to have
a stationary distribution.

Although assumptions (a) – (d) might appear restrictive,
the specified class of reactions is generic and encompasses
the standard equations used in the modelling of genetic
and regulatory networks, the cellular circuits where sto-
chasticity is most significant. Note that assumption (c) is
not unrealistic for models of gene regulatory networks, in
which linear death terms due to the cellular environment
are prevalent. Birth reactions in these models are usually
represented through nonlinear, uni-molecular (com-
pound) rate laws that appear from quasi steady-state
approximations. These functional forms have been shown
to work well in the stochastic setting [18]. Our own simu-
lations confirmed that they provide a good approxima-
tion in a wide range of parameters (results not shown).
These compound rate laws are the key components that
encode the positive and negative feedback in gene regula-
tion. Classic examples are the sigmoid functions:

which are sub-linear, (anti-)monotonic functions.

Dominating process and adapted functionals

As stated above, assumption (d) is related to domination.
In general, the state space of chemical reaction networks is
unbounded from above; hence we must use the DCFTP
construction, which requires a dominating process D with
known stationary distribution. Fortunately, it has been
shown that any network of linear first order reactions has
a stationary distribution which is multivariate Poisson

[19]. Moreover, it can be shown that  is an ergodic atom
for the multivariate Poisson, as assumed in Theorem 1
[13]. It then follows that a dominating process for any

reaction network  composed of uni-

molecular, sub-linear, (anti-)monotonic birth-death proc-
esses, as defined above, can be found by 'linearizing' the
original network; that is, by constructing a linearized ver-

sion of this network , with the same reac-

tions and compounds but with linear propensities (x)

≥ Φi(x), ∀x, ∀i that bound the original Φ from above.

Under conditions of stability, the ME of  will have a

stationary distribution , given by a multivariate Poisson
that can be obtained by solving a system of linear equa-
tions [19]. The existence of the stationary distribution of

the dominating linear network  guarantees the exist-
ence of the stationary distribution for the original network
of reversible, uni-molecular nonlinear reactions .

The dominating process D is defined as the stationary SSA

process (5) of the linearized network  with initial state

sampled from :

with the sequence of reactions .

It has been shown [13] that a correct realization of the
original (nonlinear) SSA process X for a network  with
monotonic propensities can also be obtained through an
adapted functional  defined in terms of the dominating

process D and a random mark process 

where  ~ U(0, 1):
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The update rule for  uses the ratio of the monotonic
propensity functions of the original and dominating proc-
esses as follows:

where  and

, ,  correspond to reaction  in the reaction

sequence .

The necessary ingredient for the DCFTP is the construc-
tion of an order-preserving Markov process for the evolu-
tion of two chains X and Y coupled to the dominating
process D. For our network , this process is defined as:

with transition rule:

where the componentwise transition rule is given in Eq.

(9). The transition rule  incorporates the cross-over

scheme in which the processes X and Y use the state of
each other when determining their update, as introduced
by Häggström and Nelander to deal with anti-monotonic
processes [20].

Proof
We now show that the partial ordering defined in Lemma
4 is indeed preserved under the evolution given by Eqs.
(10)–(11) for the class of reactions specified above.

Lemma 5 (Preservation of partial ordering) Consider a
chemically reversible reaction network of uni-molecular,
sub-linear, (anti-)monotone birth-death reactions and its asso-
ciated SSA dominating process D, obtained from the linearized

network , with the sequence of events . Con-

sider two coupled chains X and Y evolving under (10)–(11),

where is a sequence of random marks. Then

, ∀s > t.

Proof Assume  throughout. First consider the

case when  is monotonic. Then the possible outcomes

for t0 <s <t1 are:

Outcome (i) means that neither X nor Y is modified and
the preservation of the partial order is obvious. For (iii),

both are modified by the same amount  and the order

is preserved. The interesting case is (ii) for which X is mod-

ified but not Y. If , then 

which also implies order preservation. However, if

, then it is possible for the two chains to coalesce

if . Note that since, by uni-molecularity,

only unit changes of the states are allowed, it is impossible
for two paths to cross.

When  is anti-monotone, the outcomes are:

As above, outcomes (iv) and (vi) lead to no change in rel-
ative order. For (v), again we update X but not Y due to the

crossover scheme. As for the monotone case, if 

this leads to order preservation, while if  it is pos-

sible for the two chains to coalesce.

It thus follows that X and Y maintain their partial ordering
through every update of the (anti-)monotone process. The
proof for s > t1 follows by induction. �

Note that the dominated processes given by Eqs. (9) and
(11) become identical when X = Y. Therefore, after coales-
cence the dominated process is statistically identical to the
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original SSA process. Since we have found a dominating
process and an adapted functional, we can use Theorem 1
to obtain:

Theorem 6 (DCFTP-SSA) Under the assumptions of Lemma
5, Theorem 1 is fulfilled and the DCFTP-SSA described in
Algorithm 7 will produce a sample from the stationary distribu-
tion of the original process X with a coalescence time which will
be finite almost surely.

Proof The sandwiching (1) and funneling (2) properties
follow from the preservation of partial ordering (Lemma
5) [12]. The remainder can be adapted from the general
Theorem 1. �

Algorithm
A brief outline of the DCFTP-SSA is as follows:

Algorithm 7 (DCFTP-SSA) Given a reversible system of uni-
molecular birth-death chemical reactions with (anti-)mon-
otone, sub-linear propensity functions, obtain its linearized ver-

sion with multivariate Poisson stationary distribution :

T ← 1

loop

if U0 = L0 then

return L0

end if

T ← 2T

end loop

The function Extend( , T/2) runs Algorithm 3 for the

linearized network  and appends the path

 to the path . Similarly, the

function GenerateMarks appends paths generated from a
uniform distribution to extend the mark process. Both the
marks and the forward dominating path are then reversed
in time by the function Reverse. Extending these processes
backwards in time in this manner is justified because of
their stationarity and reversibility, which allows us to
reverse the processes and translate them in time [9].
Finally, the Evolve function starts the coupled upper and

lower chains from L-T =  and U-T = D-T and evolves them

forward as described by Eq. (11). Note that the assump-
tion of reversibility of the network ensures that the reverse
process will be forward-evolvable. Our requirement that
propensities are non-zero also ensures that reactions are
not eliminated from the network. If this were to happen,
it would effectively make the system irreversible. If L and
U have not coalesced at t = 0, D and M are extended fur-
ther back in time and L and U are restarted. Doubling the
starting time at each iteration has been shown to be rea-
sonably efficient (see [11] for a discussion).

Applications of the algorithm
Numerical convergence: First order reaction
To characterize numerically the convergence properties of
the DCFTP-SSA, consider the first order reaction where
species A is created at a (normalized) constant rate k from
a source and degraded to a sink:

Here Pj denotes the probability of having j molecules of A

and  and  are step operators [4]:

f(j) = f(j + 1) and f(j) = f(j - 1) acting on a function
f(j). For the usual initial condition with 0 molecules, the
time-dependent solution of Eq. (12) is a Poisson distribu-
tion with time-dependent parameter k(1 - e-t) [15]. Equa-
tion (12) is an instance of the immigration-death process
which appears in different settings in the stochastic proc-
esses literature.

If, as a proxy for sampling the stationary distribution π,
one obtains samples of P(j, Ts|0, 0) from repeated runs of



 π

D M0
0
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M MT T T0
2
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the SSA for a finite time Ts, this will lead to a systematic
error that will not disappear as the number of samples
(and the CPU time) is increased. The use of the DCFTP-
SSA eliminates this source of error, as shown in Fig. 1a.
This figure also shows that the guaranteed convergence of
the DCFTP-SSA incurs a modest additional CPU cost. The
increased computational cost is twofold: increased mem-
ory requirements, since we need to store the history of the
dominating process as well as the sequence of random
numbers used to update the coupled chains; and longer
running times, since we need to extend the process back-
wards for an indefinite (unbounded) amount of time. Fig.
1b presents the statistics of the coalescence times for this
reaction. In this simple reaction, the distribution of stop-
ping times is relatively symmetric and concentrated
around the mean value, without the long tails that would
correspond to long runs started a long time into the past.
As the next example shows, the distribution of coales-
cence times reflects the complexity of the structure of the
stationary distribution.

Multistability: Genetic toggle switch
The mutual activation and repression of groups of genes
in regulatory networks can lead to multi-stability allowing
cells to attain different states [5,21]. An important and dif-
ficult problem is to find the probabilities of the different
states and the expected switching times. Previously [15],
we applied the DCFTP-SSA to the standard toggle switch
with two Hill-repressed genes [22]. We now apply the
algorithm to a more complex model of two mutually acti-
vating genes [21] with a complicated activation function
which is not of the standard Monod form:

∅⎯ →⎯⎯⎯ ⎯ →⎯ ∅

∅⎯ →⎯⎯⎯ ⎯ →⎯ ∅

f n

f n

B

A

A

B

( )

( )

1

1

Convergence of the DCFTP-SSA for the first order reaction (12)Figure 1
Convergence of the DCFTP-SSA for the first order reaction (12). (a) As a function of CPU time, we represent the 
Euclidean error �E of the stationary distribution of Eq. (12) with k = 5 sampled with the DCFTP-SSA (+) and with the standard 
SSA with stopping times Ts = 2(❍), 4(�), 6( ). For this simple ME, the limiting value of the Euclidean error of the finite-time 

SSA is , where α = 1 - exp(-Ts) and I0(x) is the modified Bessel 

function of the first kind [15]. This means that SSA simulations that are run for a time Ts will converge to a systematic sampling 
error, indicated by the dotted lines. This source of error is eliminated when using the DCFTP-SSA, which shows no flooring 
for �E and the expected N-1/2 scaling with the number of Monte Carlo samples [26]. The guarantees provided by the DCFTP-
SSA come at a modest computational cost, which is comparable to that of long SSA runs. (b) The distribution of coalescence 
times Tc for the DCFTP-SSA is relatively symmetric and concentrated around the mean with a rapid decay for long times. The 
data presented corresponds to 6000 runs. This distribution reflects the benign structure of the unimodal stationary distribu-
tion of this particular ME, which makes long coalescence times unlikely.
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with the activation given by

where nA and nB are the number of protein molecules, γ is
the basal production rate and κij are parameters. The func-
tional form of the activation appears as a consequence of
particular properties of this system: each transcription site
can be occupied by up to four monomers and becomes
activated when a tetramer is bound. However, note that
f(n) is monotonic and sub-linear and therefore the
DCFTP-SSA is applicable.

For certain choices of parameters, the stationary distribu-
tion of the system is bimodal: the peak located at the ori-
gin corresponds to both genes being 'off', while the other
mode indicates both genes are 'on' (Fig. 2a). The extreme
bimodality of this distribution makes its sampling diffi-
cult using the standard SSA. As can be seen in Fig. 3a, if we
start from the initial condition (0, 0), the standard SSA
levels off in a similar manner to Fig. 1a, highlighting the
presence of a systematic error. In contrast, the DCFTP-SSA
converges to the stationary distribution at the expected N-

1/2 rate.

Figure 2b also shows that the probability sampled with
the DCFTP-SSA captures the global structure of the prob-
ability distribution even in this extreme example. On the
other hand, closer inspection of the SSA simulations
started from the (0, 0) reveals that for short stopping
times, the process remains at the mode located near the
origin (Fig 2c). Although simple heuristics on how to
choose the initial condition have been suggested to
improve the sampling of π with the SSA, Figure 2 shows
that similar mis-sampling errors appear if we run the
standard SSA from a variety of initial conditions. Fig. 2d
shows that sampling the initial condition from a uniform
grid in state space does not capture the full features of the
distribution since this initial condition does not represent
a consistent sampling for stationarity. If we use the fixed
points of the corresponding deterministic system as initial
conditions for the SSA, we would still lack the probability
mass associated with each mode. For instance, starting
half of the simulations at the origin and the remaining at
the other fixed point provides little improvement since

almost half of the simulations remain near the origin (Fig.
2e). Similar errors appear if we sample a long SSA run at
fixed intervals Δt to provide independent samples as inti-
ial conditions (Fig. 2f), or even if we use samples drawn
from the true stationary distribution as initial conditions
for the SSA.

We can understand why the stationary distribution of this
system presents such a challenge for the finite-time SSA by
considering the mean first passage times. Figure 4a shows
the average time to reach all other states from the origin
and Fig. 4b shows the average time to reach the other
mode. To be certain that an SSA run will produce correct
samples from the stationary distribution, it must visit each
mode several times. For the system considered in Fig. 2 we
need stopping times on the order of 107 to be certain that
the simulation has not been stuck in one mode. With our
implementation, the DCFTP compares favorably with the
SSA wtih Ts = 107 (data not shown).

Figure 3a summarizes the CPU times for the different SSA
sampling schemes shown in Fig. 2 compared to the
DCFTP-SSA. Again, the DCFTP-SSA introduces a reasona-
ble overhead but provides guarantees that no systematic
sampling error exists. To understand how the extreme
bimodality of this distribution affects the running time of
the DCFTP-SSA, Figure 3b shows the statistics of the coa-
lescence times for this system. As compared with Fig. 1b,
the distribution of coalescence times is bimodal with a
second mode at long coalescence times a long tail. This
reflects the complex structure of the stationary distribu-
tion in state space which induces longer coalescence times
to guarantee the correct sampling. As explained in the Dis-
cussion section, the numerical performance of the algo-
rithm in situations where long runs are more likely can be
improved by the use of rejection sampling schemes.

This simple example illustrates the potential pitfalls of
using the standard SSA for multimodal systems with long
switching time-scales. If the SSA is run with too short stop-
ping times, one runs the risk of missing important features
of the distribution that could lead to erroneous conclu-
sions about the number and relative weight of possible
states. These problems become more acute as the dimen-
sionality of the state space increases.

Steady-state dynamics: Generalized repressilator
Although regularity and robustness are important for their
reliable operation in time-keeping, circadian and synchro-
nization processes, cellular oscillators have a biochemical
basis and are subject to high levels of noise [23,24]. In pre-
vious work [15], we studied the stochastic version of the
repressilator, a synthetic transcriptional oscillator that
consists of three mutually repressing genes in a loop (Fig.
5a) and has been implemented in E. coli [23]. Experi-
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Figure 2 (caption on next page)
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ments on the original repressilator showed that the oscil-
lations are very noisy and stochastic models are required
to capture these features.

Here, we investigate the stochastic properties of the gener-
alized repressilator with an arbitrary number n of genes in
the loop [25]. Müller et al studied the deterministic ver-
sion and showed that the system oscillates when n is odd,
as expected by analogy with the ring oscillator in elec-

tronic circuits (see Fig. 5b). This system allows us to study
the dependence of the variability of the oscillations with
the number of genes and to showcase the scalibility of our
algorithm as the number of variables (and the dimension-
ality of the state space) increases.

We now use the DCFTP-SSA to characterize the periodicity
of the stochastic oscillations of the generalized repressila-
tor:

Sampling of the stationary distribution for the bistable gene network (13) using different methodsFigure 2 (see previous page)
Sampling of the stationary distribution for the bistable gene network (13) using different methods. (a) The 'true' 
stationary probability distribution π for the ME (13) calculated numerically with the approximate eigenvector method [15]. The 
parameters are κB = 25, κA = 12, κA0 = κB0 = 60, κA1 = κB1 = 10, κA2 = κB2 = κA3 = κB3 = 1, and γ = 0.01. The locations of the two 
modes match the fixed points of the corresponding deterministic system. Note the extreme asymmetry of the bimodal proba-
bility distribution. (b) The estimate of π obtained from 104 samples of the DCFTP-SSA reproduces the presence of both modes 
and their relative weights. (c) Estimate of π from 104 samples of the SSA started at (0,0) with Ts = 103. (d) Estimate of π 
obtained from 104 SSA simulations started from 104 different initial conditions chosen uniformly at random on the 100 × 100 
lattice closest to the origin and run for Ts = 103. (e) Estimate of π obtained from 104 SSA simulations, 5000 of them started 
from the origin and the other 5000 from the other mode and run for Ts = 103. (f) Estimate of π obtained from 104 samples from 
a long SSA run sampled at interval Δt = 103. Note the different scale on the z-axis for (c) and (e) and how the SSA runs (c)-(f) 
do not capture the overall structure of π.

Convergence of the DCFTP-SSA for the bistable gene network (13)Figure 3
Convergence of the DCFTP-SSA for the bistable gene network (13). (a) As a function of CPU time, we represent �E, 
the Euclidean error of the sampled distributions estimated using: the DCFTP-SSA (+), as in Fig. 2 (b); the SSA with Ts = 
1000(❍), as in Fig. 2 (c); the SSA started from the two modes (*), as in Fig. 2 (d); the SSA started from uniform initial conditions 
(∇), as in Fig. 2 (e); and the SSA uniformly sampled from a long run (�), as in Fig. 2 (f). For each scheme, we produced N = 100, 
316, 1000, 3162 and 10000 samples to show how the error improves as the number of samples increases. The DCFTP-SSA 
converges to the stationary distribution at the expected N-1/2 rate, whereas the approximate estimates obtained using the SSA 
level off in a similar manner as in Fig. 1a. (b) The distribution of coalescence times for the DCFTP-SSA for this network is 
bimodal with a very long tail for the second mode, indicating the likelihood of long coalescence times. The data presented cor-
responds to 6000 runs.
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where the shorthand Pj denotes the state 

and all integers are i mod n. Here Mi are the mRNA levels

(with production rate kM and degradation rate dM) and Ri

are the corresponding proteins (with basal rate kB and lin-

ear production rate kR). The repressilator network fulfills

the conditions of applicability of the DCFTP-SSA and we
have used our algorithm to generate time-series which are
guaranteed to be at stationarity. The fact that the system
has a persistent, oscillatory dynamics does not preclude it
from being stationary. As expected, our DCFTP-SSA simu-

lations show that the stationary distribution π conforms
to the shape of a circular ridge in 2n-dimensional space,
which is directly related to the deterministic limit cycle
[4]. In this case, the probability mass is unimodal along
the ridge, which means that sampling from a long time-
series is unproblematic since there is no risk of avoiding
regions of state space that have high probability.

As one would expect from the deterministic analysis, the
mean period increases linearly with n (Figure 5d). This
follows from the fact that the oscillatory behavior propa-

gates in a wave-like manner around the loop. If we assume
that the period is formed as the sum of n independent
genes rising and falling in sequence, then a circuit with n
genes will have a period whose mean scales linearly with
n, as shown in Figure 5d in accordance with the determin-
istic model. However, the shape and moments of the dis-
tribution of the periods change significantly as a function
of n, as shown in Figs. 5c–d. The distribution of the period
for shorter circuits will necessarily be right-skewed since
there is a minimal waiting time, akin to a refractory
period, before the gene can rise again. This asymmetry is
observed in the case of n = 3 but has almost disappeared
for n = 9, and is captured by the skewness, which decreases
towards zero as n increases.

Our numerics also indicate that the relative variability of
the period is not constant as the number of genes in the
loop increases. Figure 5d shows that the variance of the
period increases quadratically, which implies that the suc-
cessive periods are not independent. This implies that, for
the set of parameters in Figure 5, there is an optimal
length of n* = 7 genes in the loop, for which the relative
fluctuations of the period, as measured by the coefficient
of variation, are minimal. Note also that the kurtosis
remains almost constant and positive, which indicates
that there are fat tails even for longer circuits. Interest-
ingly, the kurtosis also attains a shallow minimum at n* =
7, indicating a relative decrease in the dispersion of the
distribution. Another important characteristic of an oscil-
lator is the rise time, which gives an indication of its preci-
sion. Our numerics find no change in the variance of the
rise times as the number of genes increases (results not
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Mean transition times for the bistable gene network (13)Figure 4
Mean transition times for the bistable gene network (13). (a) The mean first passage time ξ to reach the origin for the 
lattice points of the state space close to the origin. The escape time from the mode located away from the origin is 2 × 105. (b) 
The mean first passage time from the origin to the other mode is 3 × 103.
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Noise characteristics of the generalized repressilator (14)Figure 5
Noise characteristics of the generalized repressilator (14). (a) Detailed diagram of the reactions in the standard 
repressilator with three genes involving six chemical species, as implemented with our stochastic algorithm. In the simplified 
cartoon, each circle represents a gene repressing the subsequent gene in a cycle. The generalized repressilator studied here 
considers cycles with odd number of genes n = 3, 5, 7, 9. (b) The top panel shows time series of one of the proteins for the 
deterministic model of the repressilator with n = 3 (filled) and n = 9 (dashed) genes with parameters kM = 25, dM = 3, θ = 3, kR 
= 4 and α = 2. The lower panel shows the corresponding time series of the SSA started from stationarity, guaranteed by the 
DCFTP-SSA. For the top panel, the y-axis has units of protein concentration, whereas for the lower panel the y-axis has unitos 
of number of proteins. (c) The top panel shows the distribution of the period for the repressilator with n = 3 genes, while the 
bottom panel shows the same distribution for the generalized repressilator with n = 9 genes. Note that the distribution for n = 
3 is skewed with a long right tail, while that of n = 9 is more symmetric, but has fatter tails than would be expected for a Gaus-
sian distribution. The histograms were obtained from time-series with 104 periods. (d) The top two panels show the depend-
ence of the mean (�) and variance (�) of the period distribution with n. The lines indicate a linear fit for the means and a 
quadratic fit for the variances. The inset in the top right panel, shows that, for this set of parameters, the relative noise of the 
period, as measured by the coefficient of variation (*), is minimal for a length of n = 7 genes in the loop. The two lower panels 
show the skewness (∇) and kurtosis ( ) for the period distribution. The skewness decreases to zero as n grows, in accordance 
with the observed decrease of the asymmetry of the distribution. The kurtosis does not disappear as n grows indicating the 
presence of long-tails. Note that the kurtosis also reaches an apparent minimum at n = 7.
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shown). This is expected since the rise time of a single
gene is almost independent of the preceding events unlike
the period, which is an aggregated quantity and therefore
more susceptible to propagated noise. The investigation
of the noise characteristics of networks of transcriptional
oscillators will be the object of further study.

Discussion
The present work presents a detailed implementation of
the DCFTP-SSA that could be integrated with other pack-
ages in Computational Systems Biology. We have also
provided a mathematical proof of the algorithm with an
explicit statement of the limits of its applicability. This
detailed description is key to the extension of the algo-
rithm to a wider class of systems. Specifically, the DCFTP-
SSA can be applied to conversion reactions of the type A
→ B with the realistic assumption that the monotone pro-
pensity function only depends on nA. Unfortunately, the
extension to encompass bimolecular reactions of the type
A + B → C does not seem to be trivial, since the partial
ordering used in this paper will not be preserved and there
is no dominating process with known stationary distribu-
tion readily available. The latter problem can be addressed
partially by using the CFTP under the approximation that
there is an upper bound on the number of molecules in
the state space. If the bound is chosen to be large enough,
it can be shown numerically that the error will be negligi-
ble. However, this approximate method will not carry the
guarantees of stationarity that the DCFTP-SSA provides.

From the numerical viewpoint, the DCFTP-SSA is guaran-
teed to converge almost surely in finite time, but there is
no upper bound on the coalescence times Tc. Our numer-
ics show that the distribution of coalescence times can be
long-tailed when the structure of the stationary distribu-
tion is complex (Fig. 3b).

If a simulation is interrupted prematurely by an impatient
user, the final sample will be biased. An alternative perfect
sampling scheme is the FMMR algorithm [14], which uses
rejection sampling to circumvent this problem. Our expe-
rience has shown that typically a small fraction of runs
takes a very long time to converge. Being able to remove
these would speed up the algorithm significantly. The
bimodal example illustrates this point: if we were able to
place a cut-off after the first mode, a large portion simula-
tions would be accepted and at the same time there would
be a significant save in terms of both CPU time and mem-
ory. As indicated by the examples in this paper, it is
important to note that the DCFTP-SSA does not present
obvious problems with scalability, as the overhead
incurred to provide a certificate of stationarity is moder-
ate. Although the computational cost of the algorithm
depends on the intrinsic structure of the network, we have

applied the DCFTP-SSA to various networks with several
tens of variables.

In addition to producing guaranteed sampling from the
stationary distribution, the DCFTP-SSA can be used to
provide initial conditions for ordinary SSA runs. Since any
Markov process started from stationarity will remain there
for all future times, these runs are guaranteed to represent
the stationary time-traces of the system. This is important
for the numerical characterization of properties such as
escape times and autocorrelation times of systems with
high variability, e.g., with underlying multi-stable, oscilla-
tory or excitatory behaviour [15].

Conclusion
The SSA is an exact procedure to sample the time-depend-
ent probability distribution of the ME of general chemical
reaction networks at all times [7,8]. However, it provides
no guarantees when the aim is sampling from the station-
ary distribution. The DCFTP-SSA presented here addresses
this problem for a class of networks of relevance to genetic
and enzymatic regulation. Our algorithm provides guar-
anteed stationary sampling and thus removes one of the
sources of uncertainty in stochastic simulations. This can
aid in the characterization of regulatory circuits and in the
testing of model hypotheses for these systems.
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