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Abstract
Background: Systems genetic studies have been used to identify genetic loci that affect transcript
abundances and clinical traits such as body weight. The pairwise correlations between gene
expression traits and/or clinical traits can be used to define undirected trait networks. Several
authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve
as causal anchors for orienting the edges of a trait network. The availability of hundreds of
thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple
genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to
weigh the information from multiple markers.

Results: We develop and implement Network Edge Orienting (NEO) methods and software that
address the challenges of inferring unconfounded and directed gene networks from microarray-
derived gene expression data by integrating mRNA levels with genetic marker data and Structural
Equation Model (SEM) comparisons. The NEO software implements several manual and automatic
methods for incorporating genetic information to anchor traits. The networks are oriented by
considering each edge separately, thus reducing error propagation. To summarize the genetic
evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO)
scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user
to assess local and overall model fit. The NEO software allows the user to carry out a robustness
analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering
known causal relationships in the sterol homeostasis pathway using liver gene expression data from
an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a
biologically important gene co-expression module in liver tissue.

Conclusion: The NEO software can be used to orient the edges of gene co-expression networks
or quantitative trait networks if the edges can be anchored to genetic marker data. R software
tutorials, data, and supplementary material can be downloaded from: http://www.genetics.ucla.edu/
labs/horvath/aten/NEO.
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Background
The pairwise relationships between different clinical traits
(e.g. cholesterol level) and/or gene expression traits (e.g.
mRNA levels) have been successfully described with undi-
rected gene co-expression networks [1-11]. While gene
expression traits (profiles) and clinical traits represent dif-
ferent quantities, both can be described in undirected trait
networks. By definition, these undirected networks cannot
be used to describe causal relationships between the traits.
Causal information can be encoded by directed networks
where A → B if trait A causally influences trait B. We refer
to the process of assigning a causal direction to at least
some of the edges in a trait network as 'edge orienting'.
Experimental edge orienting approaches include trans-
genic modifications, viral-mediated over-expression, and
chemical perturbation of genes. Edge orienting methods
can also be based on various approaches that involve mul-
tiple perturbations, such as genetic- and time series exper-
iments [12], or by integrating protein interaction and gene
expression data [13].

Using genetic markers for orienting the edges of trait net-
works generated in genetic experiments provides signifi-
cant statistical power and specificity for recovering
directed edges [14-22]. Since randomization is the most
convincing method for establishing causal relationships
between two traits [23,24], it is natural to make use of
genetically randomized genotypes (implied by Mendel's
laws) to derive causality tests that are less susceptible to
confounding by hidden variables [19,25-29]. If a trait A is
significantly associated with a genetic marker M, variation
in M must be a cause of variation in A (denoted by M →
A) since the randomization of marker alleles during mei-
osis precedes their effect on trait A. Since the orientation
of the edge between M and A is unambiguous, M is
referred to as a causal anchor of A [15].

We follow the convention of path analysis to represent a
causal model by a directed graph. For example, the
directed graph M → A → B implies that the genetic marker
M has a causal effect on trait A, which in turn has a causal
effect on trait B. A causal graph encodes independencies
between variables. Conditional independence can be
determined by the graphical property of d-separation [30-
32]. If two traits A and B are d-separated in the graph by a
set of variables S, then the two traits are independent
given the variables in S. For example, M → A → B implies
that M and B are independent after conditioning on A.

D-separation predicts the correlational consequences of
conditioning in the causal graph [30]. By testing the cor-
relational predictions and assuming no false independen-
cies (faithfulness assumption), one can sometimes orient
edges using observational data alone [31-39].

Results
Correlation-based tests of causal models
For simplicity, we assume that the genetic markers are sin-
gle nucleotide polymorphisms (SNPs). For a given sample
(e.g. a mouse), a bi-allelic SNP can take on one of three
possible genotypes. By default, we assume an additive
genetic effect and encode these genotypes as 0, 1, or 2, but
alternative marker codings could also be considered. To
quantify the linear relationship between a SNP marker M
and a trait A, we use the correlation coefficient cor(M, A).
Ordinal variables are routinely used in path analysis and
structural equation modelling [32,40].

To determine whether trait A mediates the effect of marker
M on trait B (M → A → B) one can assess how condition-
ing on A affects the correlation between M and B. To
quantify the linear relationship between M and B after
conditioning on A, we use the partial correlation coeffi-
cient:

If the causal model M → A → B is correct, then the partial
correlation coefficient cor(M, B|A) is expected to be 0.

We use Fisher's Z transform to assess the statistical signif-
icance of a sample correlation coefficient r [23]:

where N denotes the sample size; ZFisher(r) asymptotically
follows a normal distribution (Normal(μ, 1) with mean μ
and variance 1. Under the null hypothesis of zero correla-
tion, μ = 0 and ZFisher(r) follows a standard normal distri-
bution. For brevity, we denote the Fisher transformations
of the correlation coefficients cor(A, B) and cor(M, B|A) by
Z(A, B) = ZFisher(cor(A, B)) and Z(M, B|A) = ZFisher(cor(M,
B|A)), respectively.

If the causal graph M → A → B (Figure 1a) is correct, Z(M,
B|A) follows a standard normal distribution. Thus, if the
p-value corresponding to Z(M, B|A) is high (non-signifi-
cant), the data fit the assumed causal graph. Using path
analysis rules, the causal graph M → A → B (Figure 1a)
implies the following relationships between the correla-
tion coefficients

cor(M, B) = cor(M, A)cor(A, B) (2)

We refer to the marker M as a candidate common pleiotropic
anchor (CPA) of A and B. If the expected values of cor(M,
A) and cor(A, B) are non-zero and the causal model holds,
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Eq. (2) implies that the genetic marker M will be signifi-
cantly correlated with both A and B. Thus, the marker M
can be confirmed as a pleiotropic anchor of A and B by
confirming the fit of the causal model M → A → B. We will
now consider a situation where the correlation between A
and B stems from a hidden confounder C, i.e. M → A ←
C → B. The graph implies that A and B are correlated due
to the shared confounder C. The correlation cor(M, B) is

expected to be 0 since the arrows between M and B collide
at A, i.e, M and B are d-separated without conditioning. In
this situation Z(M, B) = ZFisher(cor(M, B)) follows a stand-
ard normal distribution. If the p-value corresponding to
Z(M, B) is high (non-significant), the data fit a con-
founded model. In contrast, the partial correlation cor(M,
B|A) is expected to be non-zero since conditioning on A

Approaches for genetic marker-based causal inferenceFigure 1
Approaches for genetic marker-based causal inference. Here we contrast different approaches for causality testing 
based on genetic markers. (a) single marker edge orienting involving a candidate pleiotropic anchor (CPA) M. The upper half of 
(a) shows the starting point of network edge orienting based on a single genetic marker M which is associated with traits A and 
B. The undirected edge between A and B indicates a significant correlation cor(A, B) between the two traits. The causal model in 
the lower half of (a) implies the following relationship between the correlation coefficients cor(M, B) = cor(M, A) × cor(A, B). 
Further it implies that the absolute value of the correlations |cor(M, A)| and |cor(M, B)| are high whereas the partial correlation 
|cor(M, B|A)| (Eq. 1) is low. Figure (b) generalizes the single marker situation to the case of multiple genetic markers 

. In this case, it is straightforward to generalize single edge orienting scores to multi-marker scores. Fig-

ure (c) describes a situation when a set of genetic markers  is also available for trait B. We refer to the 

MB markers as orthogonal causal anchors (OCA) since  is expected to be 0 under the causal model MA → A → B 

→ MB, the correlation. Using simulation studies, we find that edge scores based on OCAs can be more powerful than those 
based on CPAs (see Additional File 1).
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'activates' the causal flow through the collider node, i.e. it
induces conditional dependence [32].

The opposite (reactive) causal graph M → A ← B also
implies that the expected value of cor(M, B) is zero since
the causal paths collide at A. Conditioning on A activates
this collider node, and the partial correlation cor(M, B|A)
is expected to be non-zero.

Similarly, one can show that the model A ← M → B
implies that cor(A, B|M) is expected to be zero. Under this
causal model, Z(A, B|M) asymptotically follows a stand-
ard normal distribution. In contrast, cor(M, B) is expected
to be non-zero.

These considerations illustrate that one can test the pre-
dicted correlational consequences of a causal model and
thus evaluate its fit.

We will now consider the situation of multiple markers
(Figure 1b). Denote by

a set of candidate common pleiotropic anchors of A and

B. Analogous to Eq. (2), the causal model MA → A → B

implies . The model

implies that the partial correlations  are

expected to be zero, i.e.  is pre-

dicted to follow a standard normal distributions.

Frequently an additional set of markers MB is also availa-

ble for trait B (Figure 1c). For example, when one marker

is available for each trait, i.e. , the

correlation  is expected to be 0 since the

causal arrows 'collide' at B [30]. Geometrically speaking,

the expected zero correlation between A and  implies

that the corresponding standardized vectors are orthogo-

nal. Therefore, we refer to marker  as an orthogonal

causal anchor (OCA) with respect to the edge A → B. We
will argue that the availability of orthogonal causal
anchors significantly improves the recovery of the causal
signal (see the simulations in Additional File 1). If the

model  is correct,

 are expected to be zero and

 and  asymptotically follow

standard normal distributions.

Figure 1(c) depicts a situation where two sets of genetic

markers  and

 influence traits A and B,

respectively. In this case, the correlational consequences
become increasingly complicated, which is why we use
structural equation models (SEMs) to evaluate the fit of
different causal scenarios.

Local SEM-based edge orienting scores
While SEMs can be used to study the fit of multi-trait
causal models [17,20] we only consider the local causal
models depicted in Figure 2 since the proposed NEO
method evaluates the orientation of each edge separately
based on the best causal anchors available. The fit of each
single marker model in Figure 2(a) can be tested using a
chi-square test with 1 degree of freedom. We refer to the
resulting p-value as the model p-value. In the Methods
section, we review and discuss the use of model p-values
for quantifying the fit of a causal model. The main point
is that the higher the model p-value, the better the causal
model fits the data.

To summarize the genetic evidence in favor of a given
edge orientation A → B, we propose the use of edge ori-
enting scores. The higher the value of an edge orienting
score for the orientation A → B, the stronger genetic evi-
dence favors this causal model.

In the following, we propose local SEM-based edge orient-
ing (LEO) scores for orientation A → B. For a single
genetic marker M and traits A and B, we consider the 5 dif-
ferent local causal models depicted in Figure 2(a). Addi-
tional single marker models are possible. However, under
the constraint that the markers are causal anchors (graph-
ically, arrows flow only from M and not into M), then the
five models pictured for nodes (M, A, B) in Figure 2(a)
exhaust all possible three node models that both (1)
explain A – B and (M – A or M – B) associations and (2)
can be tested. The critical technical issue is having degrees
of freedom (d.f.) remaining after estimating the model
parameters. If the degrees of freedom are 0, the model p-
values cannot be calculated. The 5 different local causal
models depicted in Figure 2(a) are used to compute the
following model p-values: P(M → A → B), P(A ← B ← M),
P(A ← M → B), P(M → A ← B), and P(A → B ← M). While
a detailed analysis should consider all model p-values, we
find it useful to summarize the genetic evidence in favor
of a given orientation A → B (model 1) using a single
number: the Local SEM-based Edge Orienting Next Best
(LEO.NB) score. The LEO.NB score is defined by dividing
the model p-value for A → B by the p-value of the best fit-
ting alternative model, i.e. the best of models 2–5 in Fig-
ure 2(a). The chi-square test p-value of the best fitting
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Illustrating the single genetic marker versus multi-marker local SEMs used in the definition of the LEO.NB scoreFigure 2
Illustrating the single genetic marker versus multi-marker local SEMs used in the definition of the LEO.NB 

score. The single genetic marker is denoted by M in (a) and the multiple genetic markers are denoted by  and  in (b) 

and (c). By definition, LEO.NB(AB) = log10{P (model 1)}/{maxi>1{P (model i)}} for a candidate A → B edge orientation, where the 
models in the definition are pictured in (a) for single marker LEO.NB scores, and in (b) for multiple marker LEO.NB scores. In 
(b) we show the orthomarker models used for the LEO.NB.OCA marker aggregation method. The hidden confounder C in 
model 4 is the causal parent of both A and B, i.e. A ← C → B. The simulation studies in Additional File 1 show that the 
LEO.NB.OCA score can be significantly more powerful than the LEO.NB.CPA score.
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alternative model is the maximum p-value of the alterna-
tive causal models. Specifically, we define the single-
marker LEO.NB score as follows:

A positive LEO.NB(A → B) score indicates that the p-value
in favor of model A → B is higher than that of any of the
competing models in Figure 2(a). A negative LEO.NB
score indicates that the A → B model is inferior to at least
one alternative model. In our simulations, we use a
threshold of 1 for LEO.NB.SingleMarker(A → B|M).

Multi-marker LEO.NB score

It is straightforward to generalize the single marker
LEO.NB score (Eq. 4) to a set of genetic markers

 (Figure 1b). We refer to the result-

ing edge orienting score as the LEO.NB.CPA score since it
is based on the set of candidate pleiotropic anchors MA

(Eq. 3):

Note that the multi-marker models used in the definition
of LEO.NB.CPA correspond to the single marker models
of Figure 2(b) with M replaced by MA.

If an additional genetic marker set

 associated with trait B is avail-

able (Figure 1c), we propose to use another edge orienting
score. According to our consistency assumption, MA con-

tains markers that are more strongly correlated with A
than with B. Similarly, MB holds markers more strongly

correlated with B than with A. If the orientation A → B is
correct, then each of the MA markers has a pleiotropic

effect by impacting first A and subsequently B. Further-

more, we refer to the markers in MB as candidate orthogo-

nal causal anchors (OCAs) since the model A → B implies
that these markers impact B, but are independent of both
A and MA. We define the likelihood-based orthogonal

causal anchor (OCA) score by assessing whether the

model MA → A → B ← MB has a higher p-value than the

alternative models depicted in Figure 2(b). Specifically,
we define

Note that model 4 in the denominator involves a hidden
confounder C. The use of two independent genetic marker
sets (MA and MB) alleviates the problem of model identi-
fiability that may plague a CPA based edge orienting
score.

Model equivalence is also a key consideration in choosing
which models to compare. From the standpoint of model
equivalence, we note that the multiple anchor models
presented in Figure 2(b) include a model with a hidden
(latent) variable connecting A and B, and that no such
model is included in the single anchor model compari-
sons. Such a model was found to be indistinguishable
from the models with a collider node, such as single
anchor models 4 and model 5. In the single marker case,
both the collider node and the hidden variable models
test for independence in the marginal relationship
between the anchor and the more distal trait node. Future
research may lead to an understanding of what type of
data allow one to consider additional alternative models
for the edge score computation. It should be straightfor-
ward to adapt the proposed LEO score to additional mod-
els as long as their model p-values can be calculated.
Correlated markers, which are frequently encountered in
practice such as in haplotype blocks, may compromise the
performance of edge orienting scores. LEO scoring allows
multiple parents of a node to be correctly accounted for
within each model. Moreover, the parents (causal
anchors) of a model are allowed to co-vary. By contrast,
the orthogonal causal anchor set is, by definition, penal-
ized for any covariation with the pleiotropic anchors.

Thresholds for the edge orienting scores
For the single marker score LEO.NB.SingleMarker, we use
a threshold of 1, which implies that the model p-value of
the causal model is 101 = 10 fold higher than that of the
next best model. For the LEO.NB.CPA and the
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LEO.NB.OCA, we use lower thresholds of 0.8 and 0.3,
respectively. Using simulation studies presented in the
Additional File, we found that these thresholds lead to
false positive rates that are often substantially below 0.05.
Similar to other statistical procedures, NEO is susceptible
to the pitfalls of multiple testing that may inflate the false
positive rate. Permutation procedures and data dependent
schemes (e.g. based on the false discovery rate) may
inform the user on how to pick a threshold for a particular
application. Further, we provide R software code for carry-
ing out both single edge and multi-edge simulation stud-
ies. Simulation studies can be used to determine the
power and false positive rates in different settings (sample
size, causal signal, confounders, etc).

In practice, one often observes strong dependence rela-
tionships between genetic markers. Our simulations show
that correlations between genetic markers can reduce the
power of edge orienting scores. Further, we mention that
the NEO software implements an option for removing
redundant markers that are highly correlated with each
other. The removal of redundant markers may alleviate
the loss of power.

Overview of network edge orienting with NEO
We now provide a detailed step-by-step description of a
typical NEO analysis. An overview is also provided in Fig-
ure 3.

Step 1: Integrate traits (gene expression traits and clinical traits) and 
SNPs
NEO takes trait and genetic marker data as input. Traits
can include microarray gene expression data, clinical phe-
notypes, or other quantitative variables. Each SNP or trait
is a node in the network, and the NEO software evaluates
and scores the edge between traits A and B if the absolute
correlation |cor(A, B)| lies above a user-specified thresh-
old. For each edge A – B, NEO generates edge orienting
scores for both possible orientations: A → B and B → A. If
an erroneous edge exists between two traits, then it is
meaningless to orient it. The NEO software can be used to
orient any edge that the user chooses to consider. To allow
the user to judge whether the existence of an edge is sup-
ported by the data, the NEO software outputs a Wald test
statistic of the path coefficient, the corresponding p-value,
and the correlation between the two traits. If the Wald test
p-value is insignificant, orienting the edge may be mean-
ingless.

Step 2: Genetic marker selection and assignment to traits
Edge orienting scores will only be generated for edges
whose traits have been anchored to at least one genetic
marker. Two basic approaches for anchoring traits to
markers are implemented in the NEO software: a manual

selection by the user or an automatic selection by the soft-
ware itself.

Manual SNP selection
NEO provides great flexibility to the user on how to
anchor traits to markers. For example, the user can manu-
ally assign SNPs to the traits (see the example in Figure 4).
This flexibility entails that the user carefully studies what
constitutes a significant relationship between traits and
markers and between the traits in the data set. The user
may wish to anchor traits to SNPs that have been impli-
cated by prior genetic analyses. For example, results from
previous quantitative trait locus studies may implicate
genetic markers associated with a trait. Multiple compari-
son issues are just starting to be addressed in the SEM lit-
erature [39,41,42]. Edge scores cannot be computed when
an overly strict multiple testing control results in no causal
anchors. On the other hand, an overly lax multiple testing
control may result in spurious causal anchors which may
lead to erroneous edge scores. We recommend that con-
servative measures of genome-wide QTL significance [43]
and false discovery rate be applied when selecting the ini-
tial causal anchor(s). Once a causal anchor has been
established as obtaining genome-wide significance, NEO
can be used to evaluate the fit of different causal models.

Automatic SNP selection
NEO can also be used to automatically relate (anchor)
traits to SNPs. The automated SNP selection methods con-
sider each trait A in isolation from the other traits when
defining a preliminary genetic marker set (denoted by M'A).
Toward this end, the user can choose 1) a greedy approach
based on univariate linear regression models, 2) a for-
ward-stepwise approach based on multivariate linear
regression models, or 3) both. The greedy SNP selection
approach defines M'A as the set of markers with the K
highest absolute correlations with A. The greedy approach
is equivalent to using univariate linear regression models
to relate A to each marker separately and subsequently
picking the K most significant markers.

For creating multivariate linear QTL models, NEO also
implements forward-stepwise marker selection. The for-
ward-stepwise marker selection method may avoid a pit-
fall that plagues the greedy SNP selection: if several
genetic markers are located very close to each other (and
are highly correlated), the greedy SNP selection may pick
all of them before considering SNPs at other loci associ-
ated with the same trait. For this reason, we recommend
combining greedy and forward-stepwise SNP selection
methods.

Once the preliminary sets of markers M'A and M'B are
obtained, NEO evaluates the consistency of each set. We
utilize a marker assignment consistency heuristic: a genetic
Page 7 of 21
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Overview of the network edge orienting methodFigure 3
Overview of the network edge orienting method. The steps of the network overview analysis are described in the text.
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Manual SNP selection to study Insig1 → Dhrc7 and Insig1 → Fdft1 in mouse liverFigure 4
Manual SNP selection to study Insig1 → Dhrc7 and Insig1 → Fdft1 in mouse liver. Using female liver gene expres-
sion data and SNP markers from the BxH mouse intercross, NEO retrieves known causal relationships in the cholesterol bio-
synthesis pathway: Insig1 → Dhrc7 and Insig1 → Fdft1. The single marker LOD score curves in (a) motivate our choice of 
manually selected SNPs (one SNP on chromosome 16 and another on chromosome 8). These SNP markers can also be used 
to screen for genes that are reactive to Insig1, see Table 2. Figures (b) and (c) show the causal models used to compute the 
model p-values in favor of edge orientations Insig1 → Dhcr7 and Insig1 → Fdft1, respectively. More details on the individual 
edges are presented in Table 1.
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marker can only serve as causal anchor for one trait. To
fulfill this heuristic, a SNP is moved from M'A to M'B if its
correlation with B is stronger than that with trait A. We
denote the resulting consistent genetic marker sets by M"A
and M"B. The resulting consistent genetic marker sets may
be comprised of dozens of SNPs. Therefore, it can be use-
ful to further filter the SNPs according to their joint pre-
dictive power for the trait. Toward this end, we use the
Akaike Information Criterion (AIC) in conjunction with
multivariate regression models to select genetic markers
from within the consistent genetic marker sets [44]. Spe-
cifically, to define the final genetic marker set MA for trait A,
we use the AIC criterion to find a parsimonious multivar-
iate regression model of A using predictors from within
M"A. The final sets of markers MA and MB are thus com-
prised of consistent genetic markers that according to the
AIC criterion best predict their respective traits; we use
these final sets as causal anchors in computing the edge
orienting scores.

The forward-stepwise approach based on multivariate lin-
ear regression models is akin to a legal courtroom where
two cases are built, weighed, and judged. Broadly, the
strongest genetic support (multivariate eQTL models) for
the genetic influence on A and B are built independently,
using AIC-based halting criteria. After consistency checks,
these multivariate eQTL models are weighed by embed-
ding them in causal models (one principal causal model
in favor of edge orientation A → B and alternative causal
models) and models are then compared using SEM fitting
indices. When candidate CPA markers can be found for A
and OCAs for B, the NEO method provides stringent con-
sistency checks and balances against over-fitting. We con-
sider automated SNP selection particularly useful when
no prior evidence suggests causal anchors for the traits.

Step 3: Compute local edge orienting scores for aggregating the 
genetic evidence in favor of a causal orientation
Both LEO.NB.CPA and LEO.NB.OCA scores are computed
for each edge orientation (A → B and B → A). We recom-
mend using the LEO.NB.OCA score (Eq. 6) as the primary
edge orienting score if markers affect both A and B. How-
ever, if the results of the LEO.NB.CPA score strongly disa-
gree with those of the LEO.NB.OCA score, the latter
should not be trusted. As described in the next step, all fit-
ting indices should be considered before calling an edge
causal.

Step 4: For each edge, evaluate the fit of the underlying local SEM 
models

Edges with high edge orienting scores may not necessarily
correspond to causal relationships. Although edge orient-
ing scores flag interesting edges, they are no substitute for
carefully evaluating the fit of the underlying local SEMs.
Since a LEO.NB score is defined as a ratio of two model p-

values, it is advisable to check whether both p-values are
small, as this would indicate poor fit of either model. If

the model p-value of the confounded model A ← C → B
is high, the correlation between A and B may be largely
due to a hidden confounder C. NEO (using the underlying
sem R package) also report a Wald test statistic for the path

coefficient from A → B. If the Wald test for an edge is sig-
nificant, the data support its existence. Apart from the
model p-value, many other SEM model fitting indices
have been defined by contrasting the observed covariance

matrix Sm × m with the fitted covariance matrix Σ( ) as

detailed in the Methods section. The NEO software
reports the standard SEM fitting indices [32,45] that are
implemented in the R package sem [46] including the
Root Mean Square Error of Approximation (RMSEA),
Comparative Fit Index (CFI), Standardized Root Mean
Square Residual (SRMSR), BIC. Since a single fitting index
reflects only a particular aspect of model fit, a favorable
value of that index does not by itself demonstrate good
model fit; it is important to assess the model fit based on
multiple indices. We follow the following standard guide-
lines for interpreting these indices [45]. Before calling an

edge A → B causal, we recommend verifying that the cor-
responding causal model has a high model p-value (say >

0.05), a low RMSEA score (say ≤ 0.05), a low SRMSR (say

≤ 0.10), a high CFI (say ≥ 0.90), and a significant Wald test

p-value (say p ≤ 0.05).

Step 5: Robustness analysis with respect to SNP selection parameters
Since the edge orienting scores for an edge A – B critically
depend on the input genetic marker sets MA and MB, we
also recommend carrying out a robustness analysis with
respect to different marker sets. In particular, the auto-
mated SNP selection results should be carefully evaluated
with regard to the threshold parameters that were used to
define the marker sets. For example, when using a greedy
SNP selection strategy, it is advisable to study how the
LEO.NB score is affected by altering the number of most
highly correlated SNPs. For a given edge and a given edge
orienting score (e.g. LEO.NB.OCA), NEO implements a
robustness analysis with respect to automatic marker
selection (see Figures 5, 6, and 7). A robustness plot shows
how the LEO.NB.OCA score (y-axis) depends on sets of
automatically selected SNP markers (x-axis). When using
the default SNP selection method (combined greedy and
forward stepwise method), robustness step K corresponds
to choosing the top K SNPs by greedy and forward selec-
tion for each trait. Since the greedy and forward SNP selec-
tion may select the same SNPs, step K typically involves
fewer than 2K SNPs per trait. The edge orienting results

q̂
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Automatic SNP selection to score Insig1 → Dhrc7 and Insig1 → Fdft1 in female and male mouse liversFigure 5
Automatic SNP selection to score Insig1 → Dhrc7 and Insig1 → Fdft1 in female and male mouse livers. These 
robustness plots show how the LEO.NB scores (y-axis) depend on sets of automatically selected SNP markers (x-axis). Here 
we use the default SNP selection method: combined greedy and forward stepwise method. Step K corresponds to choosing 
the top K greedy and top K forward selected SNPs for each trait. Since the greedy and the forward SNP selection may select 
the same SNPs, step K typically involves fewer than 2K SNPs per trait. Figures (a, b, top row) and (c, d) correspond to female 
and male BxH mice, respectively. Figures (a) and (c) report the results for edge Insig1 → Dhrc7 in female and male mouse livers, 
respectively. Figures (b) and (d) report the analogous results for Insig1 → Fdft1. NEO robustly retrieves the known causal rela-
tionship between these genes.
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should be relatively robust with respect to different
choices of K.

Step 6: Repeat the analysis for the next A-B trait-trait edge and apply 
edge score thresholds to orient the network
NEO orients each edge separately in an undirected input
trait network. The results are order-independent. For each
edge, NEO repeats steps 1–3 until all edges have been
assigned edge orienting scores. Once each edge has been
scored, the user can generate a global, directed network by
choosing an edge score (e.g. LEO.NB.OCA) and a corre-
sponding threshold (Figure 7).

NEO output and R software
The primary output of NEO is an Excel spreadsheet which
reports likelihood-based edge scores (LEO.NB.CPA,
LEO.NB.OCA) and other edge scores that are described in

the NEO manual. For each edge, the NEO spreadsheet
also contains hyperlinks that allows the user to access the
log file for each edge. The log file contains a host of infor-
mation regarding computation of the edge orienting
scores including SEM model p-values, Wald test statistics
for each path coefficient, and the SNP identifiers for the
causal anchor sets MA and MB.

Although the main output of NEO are scores for every
edge orientation, one can construct a global directed net-
work by thresholding an edge orienting score. NEO uses
the R software package sem [46] to compute model p-val-
ues and other fitting indices. The NEO software is docu-
mented in a series of separate tutorials that illustrate real
data applications and simulation studies. These tutorials
and the real data can be downloaded from our webpage.

Applications
Research goals that can be addressed with NEO
NEO can be used to address the following four research
goals. (1) On the simplest level, NEO can be used to
assign edge orienting scores to a single edge using manu-
ally chosen genetic markers (see the example in Table 1).
(2) When dealing with a single edge and multiple genetic
markers, the NEO software can automatically select mark-
ers for edge orienting. Since the automatic marker selec-
tion entails certain parameter choices, we recommend
carrying out a robustness analysis with respect to adding
or removing genetic markers. (3) When dealing with a sin-
gle trait A and manually selected genetic markers, the soft-
ware can be used to screen for other traits that are causal
or reactive to trait A. For example, in Table 2 we screen for
genes that are reactive to gene expression trait Insig1. (4)
When dealing with multiple edges, NEO can be used to
arrive at a global directed network. This can be done by
thresholding a chosen edge score. If the resulting global
network is acyclic (i.e., it does not contain loops) then d-
separation [30] and standard SEM model fitting indices
can be used to evaluate the fit of the global causal model
to the data.

Mouse data description
We illustrate our methods using data from a previously
studied F2 mouse intercross (referred to as BxH cross)
[7,11,47,48] involving two inbred mouse strains (C57BL/
6J.Apoe null and C3H/HeJ.Apoe null). The strain C57BL/6J
is susceptible to a variety of atherosclerosis, diabetes,
obesity, and heart disease related traits to which C3H/HeJ
is resistant. The F2 offspring mice are expected to show a
significant spectrum of atherosclerosis and metabolic syn-
drome responses to a high-fat diet. The mice were geno-
typed at 1278 genetic markers (SNPs) across the mouse
genome. A variety of physiological traits were measured,
including mouse body weight, fat mass, insulin, glucose,
free fatty-acid levels in the blood, and cholesterol frac-

Fsp27 is a causal driver of a biologically important co-expres-sion moduleFigure 6
Fsp27 is a causal driver of a biologically important co-
expression module. Prior work using mouse liver expres-
sion data found the 'blue' co-expression module to be biolog-
ically important [7]. Here we used automatic SNP selection 
to determine whether Fsp27 is causal of the blue module 
gene expression profiles. The expression profiles of the blue 
module were summarized by their first principal component 
(referred to as module eigengene). The blue module eigen-
gene MEblue can be considered as the most representative 
gene expression profile of the blue module. The figure shows 
the results of a robustness analysis regarding LEO.NB(Fsp27 
→ MEblue) (y-axis) with respect to different choices of 
genetic markers sets (x-axis). Both LEO.NB.CPA and 
LEO.NB.OCA scores show that the relationship is causal, i.e. 
the Fsp27 is upstream of the blue module expressions.
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Multi-edge simulation study involving 5 gene expression traits (E1-E5) and one clinical trait TraitFigure 7
Multi-edge simulation study involving 5 gene expression traits (E1-E5) and one clinical trait Trait. The heatmap 
plot in (a) depicts the true causal model. Note that a red square in the i-th row and j-th column indicates that trait i causally 
affects trait j, e.g. E1 → E2. The rows and columns of the heatmap are ordered according to a hierarchical clustering tree, 
which was constructed using average linkage hierarchical clustering based on the pairwise correlations of the traits. Figure (b) 
depicts the corresponding heatmap of the observed network that was reconstructed using the LEO.NB.OCA score. Figure (c) 
shows an alternative output graph of NEO. Blue edges indicate significant correlations and a LEO.NB.OCA score is added to 
each edges whose LEO.NB.OCA score passes a user-supplied threshold. We find that all true causal edges are correctly 
retrieved at the recommended LEO.NB.OCA threshold of 0.3. Figure (d) shows the results of a robustness analysis for the 
LEO.NB.OCA and LEO.NB.CPA scores for the edge orientation E4 → Trait. The LEO.NB.OCA scores exceed the recom-
mended threshold of 0.3 (red horizontal line), i.e. they retrieve the orientation correctly. Similarly, the LEO.NB.CPA scores 
exceed the threshold of 0.8.
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tions (HDL and LDL+VLDL). Here we focus on gene
expression data in mouse liver tissue. Since significant dif-
ferences in the gene expression profiles between male and
female mice have been observed [48], we analyzed each
gender separately.

Application I: Studying the causal relationships between Insig1, Fdft1 
and Dhcr7
Here we use both manually and automatically selected
SNP markers to compute edge orienting scores to the
known causal relationships between genes in the choles-
terol biosynthesis pathways. The gene expression levels of
Insig1 serve as a sensitive proxy for the activation level of
the SREBP transcription factors [49], allowing us to study
the known biology of those genes in the cholesterol bio-
synthesis pathway. We used the mouse liver gene expres-
sion data of the BxH mouse cross to determine whether
two known causal edge orientations [50,51]Insig1 → Fdft1
and Insig1 → Dhcr7 result in high LEO.NB scores. For the
female mice of the BxH cross, QTL analysis of Insig1
expression implicated two candidate pleiotropic anchors
(SNPs) on chromosomes 8 and 16 (Figure 4a). Together
these 2 SNPs explained 12.4 percent (R2 = 0.124) of the
variation of Insig1. As candidate orthogonal causal anchor
of Fdft1, we selected a highly significant SNP on chromo-
some 9 as can be see from the single marker LOD score
curve in Figure 4(a). Similarly, we found a candidate
orthogonal causal anchor for Dhcr7 chromosome 13. Fig-
ures 4(b,c) show the causal models used to compute the
model p-value in the numerators of the
LEO.NB.OCA(Insig1 → Fdft1) score and the
LEO.NB.OCA(Insig1 → Dhcr7) score, respectively. In
Table 1, we provide more details on the edge scores of the
causal models in Figure 4(b,c). We find that
LEO.NB.OCA(Insig1 → Fdft1) = 1.4, which lies above the
recommended threshold of 0.3. Further, we find that the
Wald test of the path coefficient is highly significant (Z

statistic = 10.7). The model p-value of the causal model is
p = 0.75 and the RMSEA is ≤ 0.001. These results suggest
that there is indeed a causal relationship Insig1 → Fdft1.
For the edge orientation Insig1 → Dhcr7,
LEO.NB.OCA(Insig1 → Dhcr7) = 1.2 and the Wald test is
highly significant at Z = 16.1, and the RMSEA is 0.051.
These results confirm the known causal relationship:
Insig1 → Dhcr7.

For the female BxH mice, we also used automatic SNP
selection to compute LEO.NB scores. For edge orienta-
tions Insig1 → Dhcr7 and Insig1 → Fdft1, the results of a
robustness analysis are presented in Figures 5(a) and 5(b),
respectively. The robustness analysis suggests that both
edges are causal in female mice since the LEO.NB.CPA
scores remain above the recommended threshold of 0.8.
However, the robustness analysis of LEO.NB.OCA for
edge Insig1 → Fdft1 (Figure 5b) shows that for a particular
set of automatically selected markers, the score dips below
the recommended threshold of 0.3 for this score. Since
automatic SNP selection is particularly vulnerable to false
positive causal anchors, it is advisable to replicate the
NEO analysis in an independent data set. For example, we
also used automatic SNP selection to compute edge ori-
enting scores in male mice of the BxH cross. Although
causal relationships may differ between male and female
mice, replication in male mice certainly provides evidence
that the reported causal relationships are true. Figures 5(c)
and 5(d) show the results of a robustness analysis for
LEO.NB.OCA(Insig1 → Dhcr7) and LEO.NB.OCA(Insig1
→ Fdft1), respectively. Overall, we find that automatic
marker selection with the LEO.NB.OCA and LEO.NB.CPA
scores provide evidence of the reported causal relation-
ships in both male and female mouse liver data.

Table 1: NEO analysis using manually specified genetic markers for computing edge scores.

Edge no. Edge LEO. NB.OCA Cor ρ Path coef Path SE Path Z Model prob Model df χ2 stat RMSEA

1 rs3705921 → Insig1 0.22 0.18 0.081 2.2
2 rs3670293 → Insig1 -0.33 -0.31 0.081 -3.8
3 rs3675054 → Dhcr7 -0.26 -0.15 0.049 -3.1
4 Insig1 → Dhcr7 1.2 0.81 0.79 0.049 16.1 0.24 5 6.8 0.051
5 Insig1 → Fdft1 1.4 0.67 0.64 0.06 10.7 0.75 5 2.7 0
6 rs3664397 → Fdft1 0.34 0.27 0.06 4.5

Using the female mouse liver gene expression data, we report edge scores for the known causal relationships Insig1 → Dhcr7 and Insig1 → Fdft1 and 
the other edges depicted in Figure 4. The table represents a condensed summary of the NEO software spreadsheet. The high value of 
LEO.NB.OCA(Insig1 → Dhcr7) = 1.2 suggests that this causal model is 101.2≈ 15.8 times more likely than the next best  local model. Similarly, 
LEO.NB.OCA(Insig1 → Fdft1) = 1.4 suggests that the causal model is 25 times more likely than the next best local model. The fourth column reports 
the marginal Pearson correlation coefficient, while the three path columns (standardized path coefficient, asymptotic standard error, and Z-score 
for the edge) give details for each individual edge in the SEM models. The last five columns summarize the fits of the two best fitting SEM models 
shown in Figures 4(b) and (c). The model probability column (Eq. 7) was computed using a central χ2 statistic with the 5 degrees of freedom. The 
high, non-significant model p-values suggest good fit. The Root Mean Square Error of Approximation (RMSEA) is a standard SEM fit evaluation index 
that, similar to the χ2 stastic, evaluates the overall fit of the SEM model; a value smaller than 0.05 is desirable.
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Application II: Screening for genes that are reactive to Insig1
In this application, we illustrate that for a single trait (here
Insig1) and manually selected genetic markers NEO can be
used to screen for other traits that are reactive to the trait
in question.

We again used the above-mentioned genetic markers on
chromosomes 8 and 16 as causal anchors for Insig1. For
each gene expression trait B, we computed a LEO.NB score
for the edge Insig1 → B. Table 2 reports details for 23 high-
est ranking genes. Prior literature [50,51] suggests that 14
out of the 23 genes are reactive to Insig1 and are part of the
well-studied sterol homeostasis pathway. Since so many
known sterol regulated positive controls are recovered
simultaneously, these findings are highly significant.
Using the 23388 array genes (probes), and assuming that
there are 200 known genes downstream of Insig1 (a con-
servative estimate), we compute the Fisher exact test for

the set of 9 predicted versus 14 known downstream genes
giving a p-value of 1.0 × 10-13 for the predicted novel gene
set.

Moreover, our analysis also implicates nine novel genes as
being affected by the same pathway in female liver. A
PubMed literature search on these genes did not suggest
known relationships to liver or sterol impacted gene
expression.

NEO gene screening requires careful validation. For exam-
ple, we report the results of a NEO analysis in male mouse
liver data in Table 2. Of the nine novel genes suggested
from the female analysis, the male liver analysis confirms
three of these: Tlcd1, Slc25a44, and Qdpr. The disparity
between male and female mice may reflect the tissue-spe-
cific expression and regulation of sexually dimorphic
genes [52].

Table 2: Using NEO to identify genes that are reactive to Insig1.

Edge orientation 
Insig1↓

LEO. NB. OCA 
female

Model prob Path coef Wald test pval df χ2 Known 
literature/novel 

(a.k.a.)

LEO. NB. OCA 
male

Male mice val†

Fdft1 1.4 0.75 0.64 <e-20 5 2.7 + 0.2
Dhcr7 1.2 0.24 0.79 <e-20 5 6.8 + 1.9 *
Scd1 1.2 0.58 0.63 <e-20 5 3.8 + 0.4 *

Sc4mol 1.1 0.35 0.68 <e-20 5 5.6 + 0.5 *
0610030G03Rik 1.1 0.82 0.67 <e-20 5 2.2 novel (Tlcd1) 2.4 *

Fads2 1.0 0.64 0.61 <e-20 5 3.4 + 0.02
Adipor2 0.97 0.98 0.61 <e-20 5 0.7

3
+ -2.0

Fasn 0.96 0.72 0.77 <e-20 5 2.9 + 1.0 *
Eaf2 0.89 0.16 0.54 6e-16 5 8 novel, Eaf2 -0.5

Stard4 0.87 0.46 0.59 <e-20 5 4.6 + 0.7 *
Fads1 0.86 0.82 0.73 <e-20 5 2.2 + -0.5
Dlat 0.84 0.81 0.58 <e-20 5 2.3 + 0.7 *

Rdh11 0.82 0.80 0.73 <e-20 5 2.3 novel, Rdh11 -0.7
B430110G05Rik 0.81 0.87 0.52 2e-13 5 1.8 novel (Slc25a44) 0.7 *

Aqp8 0.72 0.61 0.59 <e-20 5 3.6 + -1.6
Slc23a1 0.63 0.58 0.49 1e-11 5 3.8 novel, Slc23a1 0.1
Slc25a1 0.63 0.37 0.65 <e-20 5 5.4 novel, Slc25a1 -0.3

Acac 0.59 0.64 0.73 <e-20 5 3.4 + -0.4
Acas2 0.58 0.19 0.64 <e-20 5 7.4 + -2.5
Gale 0.53 0.65 0.58 <e-20 5 3.3 novel, Gale -0.3
Mod1 0.38 0.60 0.59 <e-20 5 3.7 + 0.6 *
Qdpr 0.37 0.74 0.59 <e-20 5 2.7 novel, Qdpr 0.4 *

6030440G05Rik 0.35 0.70 0.54 8e-15 5 3 novel (Frmd4b) -0.7

Here we used the female mouse liver BxH data to illustrate that NEO can be used to identify genes that are reactive to a given trait (here Insig1). 
The table reports the 23 genes with highest LEO.NB.OCA(Insig1 → B) scores. Since 14 of the 23 genes are already known to be reactive to Insig1, 
these results represent a highly significant validation success of NEO; using the 23388 genes on the array and assuming that there are 200 known 
genes downstream of Insig1 (a conservative estimate), the Fisher exact p-value of validation success is p = 1.0 × 10-13. The NEO analysis in female 
mice also implicates 9 novel genes. PubMed searches on these genes did not turn up any information about a role of these genes in liver or sterol 
homeostasis. The table also reports the analysis results using the male mice of the BxH cross. The validation (val†) column shows a star (*) if the 
initial finding in female liver was replicated in the independent test set of 129 F2 male mice; we defined validation success as LEO.NB.OCA score 
above 0.3 using the default settings of automatic SNP marker selection. The male liver analysis confirms three of the nine novel genes suggested 
from the female analysis: Tlcd1, Slc25a44, and Qdpr. The fact that not all genes can be replicated in the male data may reflect known differences 
between female and male mouse liver tissue expression profiles [48].
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Relationship to prior work
The above application describes the use of NEO for find-
ing reactive genes to Insig1. Here we contrast this NEO
based gene screening method to a related gene screening
method [15] that utilizes a hybrid between the single
anchor and the candidate pleiotropic anchor approach
(refer to our Figure 1, panels (a) and (b)). Similar to our
computation of the LEO.NB.CPA score, the authors use a
forward-backward stepwise regression procedure to build
the initial genetic model for the downstream trait. For
each locus retained in the genetic model for a given trait,
their LCMS (Likelihood-based Causality Model Selection)
test evaluates genes for causality by comparing three of the
five single anchor models (models 1, 2, and 3) shown in
our Figure 2(a) for smallest AIC. Taking just the genes for
which the causal model – model 1 of Figure 2(a) for a sin-
gle gene A and trait B – fits best for at least two common
pleiotropic markers, the candidate causal gene list is gen-
erated by ranking genes according to 'the amount of
genetic variance of the trait that was causally explained by
variation in their transcript abundance,' which amounts
to comparing the p-values of the CPA models for all final
candidate genes. In contrast, NEO makes use of orthogo-
nal anchors and fits multiple orthogonal anchors simulta-
neously. Our simulations suggest power advantages of the
resulting LEO.NB.OCA score (Additional Figure 1).

Application III: Fsp27 is upstream of a biologically interesting gene co-
expression module in female BxH mice
Here we illustrate how NEO can be used to assign edge
orienting scores to a single edge using manually and auto-
matically chosen genetic markers. Specifically, we com-
puted edge orienting scores for the edge Fsp27 → MEblue
where Fsp27 (also known as Cidec) corresponds to a pro-
apoptotic gene that is related to metabolic syndrome:
Fsp27-null mice have been found to be resistant to obesity
and diabetes; Fsp27 expression is halved in obese humans
after weight loss; and Fsp27 regulates lipolysis in white
human adipocytes [53]. The other quantitative trait, MEb-
lue, represents the activation status of an entire pathway.
More specifically, MEblue is the module eigengene (i.e.,
the first principal component) of the biologically impor-
tant 'blue' gene co-expression module described in [7,11].
This gene co-expression module was comprised of highly
correlated genes and MEblue is a summary gene expres-
sion trait that best represents the expressions of the blue
module genes.

To study whether Fsp27 causally affects MEblue, we con-
ducted both manual and automatic SNP selection
approaches. We used a previously identified SNP marker
on chromosome 19 (SNP19) that affected the expression
of the blue module genes [7,11] and of several physiologic
traits as the manually chosen input SNP. This genetic
marker was previously referred to as a module quantita-

tive trait locus (mQTL) since it was found to affect the
gene expression profiles of most blue module genes.
Using this SNP, we found highly causal LEO.NB scores
between Fsp27 and MEblue. The LEO.NB.OCA scores
passed the threshold of 0.3 and the LEO.NB.CPA scores
passed the threshold of 0.8. We also used the automatic
SNP selection strategies to assess the causal relationship
between Fsp27 and MEblue. The results of a robustness
analysis can be found in Figure 6. We find that the causal
relationship Fsp27 → MEblue is highly robust with respect
to different automatic marker selection methods.

Simulation studies
Multi-edge simulation model that involves one hundred SNPs
NEO analysis can orient the edges of a multi-trait network
by automatically selecting markers for each trait sepa-
rately. The analyses proceed in a stepwise fashion: edges
are oriented one at the time. For each edge, NEO com-
putes edge orienting scores (LEO.NB.OCA, LEO.NB.CPA,
etc). By thresholding these edge orienting scores, one can
arrive at a globally oriented trait network. The details of
the simulation model and relevant R code is presented in
an R software tutorial on our webpage. Briefly, we simu-
lated a causal network between five gene expressions
(denoted by E1 through E5) and a trait (denoted by Trait).

Each of the 6 traits was simulated to be under the causal
influence of 3 SNPs. We added 82 noise SNPs so that the
data contained 100 SNPs.

We simulated the following causal relationships between
the traits:

E1 → E2

E1 → E3

E3 ← HiddenConfounder → E4

E4 → Trait

Trait → E5.

Note that the correlation between traits E3 and E4 was
entirely due a hidden confounder. The heatmap plot in
Figure 7(a) depicts the true causal model. Note that a red
square in the i-th row and j-th column indicates that trait
i causally affects trait j. The rows and columns of the heat-
map are ordered according to a hierarchical clustering
tree, which was constructed using average linkage hierar-
chical clustering with the dissimilarity diss(Ei, Ej) = 1 -
|cor(Ei, Ej)|. Figure 7(b) shows the corresponding heat-
map of the observed network that was reconstructed using
the LEO.NB.OCA score. Figure 7(c) shows an alternative
output graph of NEO. Blue edges indicate significant cor-
Page 16 of 21
(page number not for citation purposes)



BMC Systems Biology 2008, 2:34 http://www.biomedcentral.com/1752-0509/2/34
relations (at a user-supplied threshold) and a
LEO.NB.OCA score is added to each edges whose
LEO.NB.OCA score passes a user-supplied threshold. We
find that all true causal edges are correctly retrieved at the
recommended LEO.NB.OCA threshold of 0.3. Figure 7(d)
shows the results of a robustness analysis for the
LEO.NB.OCA and LEO.NB.CPA scores for the edge orien-
tation E4 → Trait. The LEO.NB.OCA and the LEO.NB.CPA
scores exceed their respective threshold of 0.3 and 0.8 for
all steps of the robustness analysis, i.e., they retrieve the
orientation correctly. Alternative simulation models can
be explored using our online tutorial.

Single edge simulation model parameterized with the heritability
In Additional File 1, we describe several simulation stud-
ies that use a single edge simulation model. Briefly, we
simulated two traits A and B that are anchored to genetic
marker sets MA and MB, respectively. The correlation cor(A,
B) results from both a causal influence of B on A and from
a hidden confounder C. This single edge model is used i)
to study the choice of thresholds for the LEO.NB scores, ii)
to compare the LEO.NB.CPA with LEO.NB.OCA scores,
and iii) to evaluate automatic SNP selection methods. The
results of these simulations are described in Additional
File 1 and in our online R software tutorials.

Discussion
We propose methods for using multiple genetic markers
to recover causal trait-trait relationships in systems genetic
studies. NEO will be particularly useful for the analysis of
experiments in which common genetic variations are lev-
eraged to explore complex genetic traits.

We propose several edge orienting scores that measure the
genetic evidence in favor of a given edge orientation A →
B. While several methods exist for constructing undirected
gene co-expression networks based on thousands of
genes, we have evaluated the NEO method for inferring
directed networks involving relatively few genes (fewer
than 10 in our simulations). Future research could explore
the use of the method for inferring directed networks
involving thousands of genes.

Our simulation studies show that orthogonal causal
anchors lead to powerful edge scores that may outperform
scores based only on candidate pleiotropic anchors (Addi-
tional Figure 1 in Additional File 1). To afford flexibility
to the user, the NEO software provides several options for
anchoring the traits to genetic markers (manual versus
automatic), computing local edge scores (LEO.NB.CPA,
LEO.OCA), and diagnosing poor model fit (RMSEA, CFI
score, etc). NEO provides multiple options for automati-
cally anchoring a trait to genetic markers: greedy, forward,
and combined (greedy and forward) SNP marker selec-
tion. While our simulation studies suggest that these three

SNP marker selection methods have similar performance,
we find that the combined SNP marker selection performs
best when signal SNPs are in high linkage disequilibrium
with noise SNPs (Figure 2 in Additional File 1).

NEO's local, stepwise approach for orienting edges of a
trait network allows one to orient networks involving
hundreds or even thousands of traits. Since the calcula-
tion of edge orienting scores is based on local causal mod-
els, NEO is relatively robust with regard to mistaken
orientation of some edges in the global network.

Although NEO performs well in simulation studies and
the reported real data applications, we note that it has sev-
eral limitations. The first limitation is that it requires the
availability of genetic markers that are significantly associ-
ated with at least one trait per edge. Spurious associations
between the markers and traits will result in meaningless
edge orienting scores. Although the multi-marker score
(LEO.NB.OCA) is quite robust to noise SNPs in our simu-
lations, false-positive input SNPs will result in unreliable
edge scores. The automatic SNP selection is particularly
vulnerable to false positives and its results should be care-
fully validated using biological experiments or causality
analysis of independent data.

The second limitation is that the resulting global trait net-
work may contain loops, i.e. it may be cyclic. In contrast,
a directed acyclic graph (DAG) has no cycles. DAGs
appear in models where it does not make sense for a trait
to have a path to itself. While local DAGs are used for ori-
enting individual edges, the reconstructed global trait net-
work may no longer be acyclic. Acyclicity is theoretically
desirable since it allows one to test causal predictions
using Pearl's formalism of d-separation [30-32]. The con-
straint of acyclic graphs in many network learning algo-
rithms is often more a mathematical convenience than
reflective of biology; cycles may reflect feedback loops for
maintaining homeostasis. When more and more edges are
oriented, as in the IC/IC* [31] and PC/PC* [54] algo-
rithms, an error in one part of the network can propagate
and cause erroneous orientations in unrelated portions of
the network. Most often these errors arise due to confu-
sion between confounded and truly causal flows. To avoid
being misled, NEO deliberately discards the evidence
from correlated trait neighbors in the undirected graph
during LEO scoring. By computing local edge orienting
scores without regard to a global acyclicity constraint, the
analysis is relatively robust to mis-oriented neighboring
edges. NEO uses causal anchors for each edge separately
and thus allows the genetic data to speak for themselves.

The proposed LEO.NB scores are local in that they orient
one edge at a time without regard to the orientations of
the other edges. The reconstruction of the global network
Page 17 of 21
(page number not for citation purposes)



BMC Systems Biology 2008, 2:34 http://www.biomedcentral.com/1752-0509/2/34
should be taken with a grain of salt. While we report one
simulation model where the global network was recon-
structed correctly, future research should carefully evalu-
ate the performance of the NEO approach for inferring
global networks. A potential use of NEO is to use it for ini-
tializing an iterative edge orienting algorithms for large
networks that maximizes a global SEM fitting index.

The third limitation is that the SEM-based edge orienting
scores assume linear relationships between traits and SNP
markers. This is mathematically convenient but non-lin-
ear effects are common and have been reported in the lit-
erature [55]. The NEO approach works in the domain of
linear graphical models since it is based on correlations
and SEMs. Akin to the use of Pearson versus Spearman
correlation, the software also offers the option of model-
ling monotone quantitative relationships in NEO by con-
verting all data to ranks before further processing. NEO
will not work for traits that satisfy non-monotone rela-
tionships. A fourth limitation is that the influence of
genetic markers may be indirect. NEO may miss some
relationships. While SNP changes must be upstream
(causal) of gene expression and phenotype manifesta-
tions, this does not preclude some SNPs from modifying
the action of other SNPs, and the effect of such modifiers
may become apparent only in particular contexts.

Causal inference and structural equation modeling
assume that relevant traits and causal anchors have been
included in the causal model. Under-specified causal
models, i.e. models that omit important variables, may
mislead the user to detect spurious causal relationships.
NEO leads to relatively simple causal networks that do not
incorporate dynamic or hierarchical properties (compare
to [56-58]). Given all these potential limitations it is reas-
suring that NEO performs well at retrieving known causal
relationships in the reported real data applications. Since
NEO focuses on individual edges, we expect that NEO will
be particularly useful for identifying traits that are causal
for (or reactive to) a given trait. For example, we illustrate
that NEO can be used to identify gene expression traits
that are reactive to Insig1. The sem R package can be used
to evaluate the global fit of an acyclic multi-trait network.

The NEO algorithm computes an edge score for each edge
without regard to the information gained from neighbor-
ing edges. NEO aims to harness the power of the estab-
lished upstream causal anchors (markers) as fully as
possible; thus, it is appropriate when genetic variations
are a major source of the variation in the traits. To the
extent the environment (e.g. diet) is also varied, the NEO
approach may be less effective. It is plausible that addi-
tional assumptions may allow one to use unshielded col-
liders to improve the causal inference [32]. This is a
promising avenue of future research.

We focused on the use of SNP markers which capture only
a limited amount of the sequence information of each
individual. In the not too distant future, it will be eco-
nomically feasible to obtain the sequence information of
each study subject. Since sequence information is likely to
enhance the causal anchor assignment, sequence data
may greatly improve the power of the NEO method. Apart
from the common genetic variation that perturbs gene
expression in mouse crosses, NEO can also be applied to
orient edges on the basis of causal anchors from popula-
tion-based allelic association studies, cell hybrids, or
transfected cells.

Conclusion
Natural randomization of alleles that occurs during meio-
sis can be used to study the causal information flow
through trait networks. For example, we use mouse cross
data to retrieve known causal relationships in the sterol
biosynthesis pathway. We find that the proposed edge
scores (LEO.NB.OCA, LEO.NB.CPA) are quite robust with
respect to adding extraneous noise SNPs. Combined with
the use of orthogonal causal anchors, the proposed edge
orienting scores can provide a strong basis for further
experimental evaluation of the predicted causal relation-
ships.

Methods
A detailed description of our methods, the data, and the R
software scripts can be downloaded from our webpage.
Here we will briefly outline the main points.

Review of Structural Equation Models
Structural equation modelling descends from Sewall
Wright's path analysis and is a generalization of multivar-
iate linear regression analysis. Since maximum likelihood
testing procedures were incorporated into the analysis,
SEMs have become a widely used tool to explore the
causal relationship between multiple variables
[31,32,45,46,59,60]. Structural equation modelling has
also been found useful for describing the relationships
between traits and genetic markers [17].

SEM analysis typically starts with variables centered on
their means and focuses on the covariance relationships.
Traits or nodes are connected by arrows denoting causal
relationships. The causal relationships define a systems of
linear regression models where the parents of a node are
used to predict the child node's response. The system of
resulting linear equations imposes constraints on the
structure of the expected covariance matrix. Given m
observed traits, we denote the observed sample covariance
matrix by Sm × m and the expected covariance matrix under

the causal model by Σ(θ). For the models considered in

this article, the parameters θ include path coefficients
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between the traits and variances of the genetic markers. To
arrive at a maximum likelihood estimate of the model

covariance matrix , the following statistical crite-

rion is minimized:

F(θ) = ln |(Σθ)| + tr(SΣ-1(θ)) - m - ln |S|

We denote the maximum likelihood estimate of θ by 

and the corresponding maximum likelihood by F( ). The
SEM model chi-square statistic is defined as follows:

where N denotes the sample size. The null hypothesis
states that the expected covariance matrix equals that of
the underlying causal model. In large samples and assum-
ing multivariate normality, X2 is distributed as a Pearson
chi-square statistic. This statistic is known as the model
chi-square or generalized likelihood ratio statistic. If X2 =
0, the causal model perfectly fits the data. If the causal
model is correct then X2 asymptotically follows a central

chi-square distribution  with

degrees of freedom df determined by the number of
observed variables m and the number of free parameters t.
The model chi-square statistic statistic X2 can be used to
compute a model p-value for each causal model. For

example, P(M → A → B) = P(data|M → A → B) denotes
the p-value for the model in which SNP marker M causally
affects trait A which in turn affects trait B. X2 tests the null
hypothesis that the model is correct. A small model p-
value (say p < 0.05) indicates that the causal model does
not fit well. Following the logic of an 'accept-support' con-
text [59,61] where the null hypothesis represents the
researchers belief, it is the failure to reject the null hypoth-
esis that supports the causal model.

The X2 fit statistic and the corresponding model p-value
have several limitations, e.g. they are sensitive to the size
of correlations and they depend on the sample size N
[59]. Despite these limitations, we chose the model p-
value as the basis of the LEO.NB scores (Eq. 4) because it
is the key ingredient of most, if not all, alternative fitting
indices. Our model p-value based LEO.NB score can be
considered as a relative fitting index that contrasts the fit of
the causal orientation to that of the other models. Alterna-
tive edge orienting scores could be defined by replacing
the model p-value by another fitting index for which high
values indicate good fit, e.g. the comparative fitting index
(CFI). Studying the performance of these generalizations
of the LEO.NB score is beyond the scope of this article.

Availability and requirements
Project name: Network Edge Orienting (NEO) R software

Project home page: http://www.genetics.ucla.edu/labs/
horvath/aten/NEO/

Operating system(s): Platform independent

Programming language: R

Licence: GNU GPL 3

Authors' contributions
JEA and SH jointly developed the methods and wrote the
article. JEA implemented the NEO software. TFF evaluated
the method in several real data applications, helped with
the R software tutorials, and the write-up. SH and AJL
directed the methodological research and applications,
respectively. All authors read and approved the final man-
uscript.

Additional material

Acknowledgements
We would like to acknowledge valuable comments from our colleagues: 
Peter Langfelder, Elliot Landaw, Anja Presson, Janet Sinsheimer, Ken Lange, 
Paul Mischel, Stan Nelson, Tom Drake, Dan Geschwind, Roel Ophoff, Dan 
Salomon, Pui Kwok. S.H. and A.J.L. acknowledge the grant support from 
1U19AI063603-01, HL30568, and HL28481. J.E.A. acknowledges grant sup-
port from HG02536-04 and DGE9987641.

References
1. Zhou X, Kao M, Wong W: Transitive Functional Annotation By

Shortest Path Analysis of Gene Expression Data.  PNAS 2002,
99(20):12783-88.

2. Steffen M, Petti A, Aach J, D'haeseleer P, Church G: Automated
modelling of signal transduction networks.  BMC Bioinformatics
2002, 3:34.

3. Stuart JM, Segal E, Koller D, Kim SK: A Gene-Coexpression Net-
work for Global Discovery of Conserved Genetic Modules.
Science 2003, 302(5643):249-255.

4. Zhang B, Horvath S: A General Framework for Weighted Gene
Co-Expression Network Analysis.  Stat Appl Genet Mol Biol 2005,
4:Article17.

ˆ ( ˆ)Σ Σ= q

q̂

q̂

X N F2 1= −( ) ( )q (7)

X df tm m2 2 1
2~ ( )( )c = −+

Additional file 1
Single edge simulation study. This document describes our single edge 
simulation studies involving the LEO.NB.CPA score (Eq. 5) and the 
LEO.NB.OCA score (Eq. 6). We describe the parameters used in the sin-
gle edge A ← B simulation model. A hidden confounder C affects the cor-
relation between A and B. The effect of SNP markers on traits A and B is 
parameterized with the restricted heritabilities. The single edge simulation 
model is used i) to study the choice of thresholds for the LEO.NB scores, 
ii) to compare the LEO.NB.CPA with LEO.NB.OCA scores, and iii) to 
evaluate automatic SNP selection methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-34-S1.pdf]
Page 19 of 21
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1752-0509-2-34-S1.pdf
http://www.genetics.ucla.edu/labs/horvath/aten/NEO/
http://www.genetics.ucla.edu/labs/horvath/aten/NEO/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12196633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12196633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12934013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12934013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646834


BMC Systems Biology 2008, 2:34 http://www.biomedcentral.com/1752-0509/2/34
5. Carlson M, Zhang B, Fang Z, Mischel P, Horvath S, Nelson SF: Gene
Connectivity, Function, and Sequence Conservation: Predic-
tions from Modular Yeast Co-expression Networks.  BMC
Genomics 2006, 7(40):.

6. Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page G,
Somerville C, Loraine A: Transcriptional Coordination of the
Metabolic Network in Arabidopsis.  Plant Physiol 2006,
142(2):762-774.

7. Ghazalpour A, Doss S, Zhang B, Plaisier C, Wang S, Schadt E, Thomas
A, Drake T, Lusis A, Horvath S: Integrating Genetics and Net-
work Analysis to Characterize Genes Related to Mouse
Weight.  PloS Genetics 2006, 2(8):.

8. Oldham MC, Horvath S, Geschwind DH: Conservation and evolu-
tion of gene coexpression networks in human and chimpan-
zee brains.  PNAS 2006, 103(47):17973-17978.

9. Horvath S, Zhang B, Carlson M, Lu K, Zhu S, Felciano R, Laurance M,
Zhao W, Shu Q, Lee Y, Scheck A, Liau L, Wu H, Geschwind D, Febbo
P, Kornblum H, TF C, Nelson S, Mischel P: Analysis of Oncogenic
Signaling Networks in Glioblastoma Identifies ASPM as a
Novel Molecular Target.  PNAS 2006, 103(46):17402-7.

10. Cokus S, Rose S, Haynor D, Grønbech-Jensen N, Pellegrini M: Mod-
elling the network of cell cycle transcription factors in the
yeast Saccharomyces cerevisiae.  BMC Bioinformatics 2006,
7:381.

11. Fuller T, Ghazalpour A, Aten J, Drake T, Lusis A, Horvath S:
Weighted gene coexpression network analysis strategies
applied to mouse weight.  Mammalian Genome 2007, 18(6–
7):463-472.

12. Geier F, Timmer J, Fleck C: Reconstructing gene-regulatory net-
works from time series, knock-out data, and prior knowl-
edge.  BMC Systems Biology 2007, 1(11):.

13. Liu Y, Zhao H: A computational approach for ordering signal
transduction pathway components from genomics and pro-
teomics Data.  BMC Bioinformatics 2004, 5:158.

14. Thomas DC, Conti DV: Commentary: The concept of 'Mende-
lian randomization'.  International Journal of Epidemiology 2004,
33:21-25.

15. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, Sie-
berts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A,
Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA,
Sachs A, Lusis AJ: An integrative genomics approach to infer
causal associations between gene expression and disease.
Nature Genetics 2005, 37(7):710-717.

16. Smith GD: Randomized by (your) god: robust inference from
an observational study design.  J Epidemiol Community Health
2006, 60:382-388.

17. Li R, Tsaih SW, Shockley K, Stylianou IM, Wegedal J, Paigen B,
Churchill GA: Structural Model Analysis of Multiple Quantita-
tive Traits.  PLoS Genet. 2006 Jul;2(7):e114 2006, 2(7):e114.

18. Zhu J, Wiener M, Zhang C, Fridman A, Minch E, Lum P, Sachs J, Schadt
E: Increasing the Power to Detect Causal Associations by
Combining Genotypic and Expression Data in Segregating
Populations.  PLoS Comput Biol 2007, 3(4):0692-0703. (e69)

19. Kulp DC, Jagalur M: Causal inference of regulator-target paris
by gene mapping of expression phenotypes.  BMC Genomics
2006, 7:125.

20. Chen L, Emmert-Streib F, JD S: Harnessing naturally randomized
transcription to infer regulatory relationships among genes.
Genome Biol. 2007;8(10):R219 2007, 8(10):R219.

21. Sieberts S, Schadt E: Moving toward a system genetics view of
disease.  Mamm Genome 2007, 18(6):389-401.

22. Chen J, Xu H, Aronow B, Jegga A: Improved human disease can-
didate gene prioritization using mouse phenotype.  BMC Bio-
informatics 2007, 8:392.

23. Fisher RA: Statistical methods for research workers 12th edition. Edin-
burgh, UK: Oliver & Boyd; 1954. 

24. Greenland S: Randomization, statistics and causal inference.
Epidemiology 1990, 1(6):421-9.

25. Katan MB: Apolipoprotein E isoforms, serum cholesterol, and
cancer.  Lancet 1986, i:507-508.

26. Clayton D, McKeigue PM: Epidemiological methods for studying
genes and environmental factors in complex diseases.  Lancet
2001, 358:1356-1360.

27. Smith GD, Ebrahim S: 'Mendelian randomization': can genetic
epidemiology contribute to understanding environmental

determinants of disease?  International Journal of Epidemiology 2003,
32:1-22.

28. Zhu J, Lum PY, Lamb J, HuhaThakurta D, Edwards SW, Thieringer R,
Berger J, Wu MS, Thompson J, Sachs AB, Schadt EE: An integrative
genomics approach to the reconstruction of gene networks
in segregating populations.  Cytogenet Genome Res 2004,
105:363-374.

29. Thompson JR, Minelli C, Abrams KR, Tobin MD, Riley RD: Meta-
analysis of genetic studies using Mendelian randomization-a
multivariate approach.  Stat Med 2005, 24:2241-2254.

30. Pearl J: Probabilistic Reasoning in Intelligent Systems 2nd edition. San
Francisco, CA: Morgan Kaufmann Publishers, Inc; 1988. 

31. Pearl J: Causality: Models, Reasoning, and Inference Cambridge, UK:
Cambridge University Press; 2000. 

32. Shipley B: Cause and Correlation in Biology 2nd edition. Cambridge, UK:
Cambridge University Press; 2000. 

33. Jordan MI, (Eds): Learning in Graphical Models Cabridge, MA: The MIT
Press; 1998. 

34. Cooper GF: A Simple Constraint-Based Algorithm for Effi-
ciently Mining Observational Databases for Causal Relation-
ships.  Data Mining and Knowledge Discovery 1997, 1:203-224.

35. Shipley B: A new inferential test for path models based on
directed acyclic graphs.  Structural Equation Modeling 2000,
7:206-218.

36. Korb KB, Nicholson AE: Bayesian Artifical Intelligence Boca Raton, FL:
Chapman & Hall/CRC; 2004. 

37. Schaefer J, Strimmer K: An empirical Bayes approach to infer-
ring large-scale gene association networks.  Bioinformatics 2005,
21:754-764.

38. Opgen-Rhein R, Strimmer K: From correlation to causation net-
works: a simple approximate learning algorithm and its
application to high-dimensional plant gene expression data.
BMC Systems Biology 2007, 1(37):.

39. Aten JE: Causal not Confounded Gene Networks: Inferring
Acyclic and Non-acyclic Gene Bayesian Networks in mRNA
Expression Studies using Recursive V-Structures, Genetic
Variation, and Orthogonal Causal Anchor Structural Equa-
tion Models.  In Ph.D. Dissertation in Biomathematics University of
California Los Angeles, Department of Biomathematics; 2008. 

40. Bentler PM: EQS 6 Structural Equations Program Manual Encino, CA:
Multivariate Software, Inc; 2006. 

41. Cribbie RA: Evaluating the importance of individual parame-
ters in structural equation modeling: the need for type I
error control.  Personality and Individual Differences 2000,
29:567-577.

42. Cribbie RA: Multiplicity Control in Structural Equation Mode-
ling.  Structural Equation Modeling 2007, 14:98-112.

43. Lander EJ, Kruglyak L: Genetic dissection of complex traits:
guidelines for interpretation and reporting linkage results.
Nature Genetics 1995, 11:241-247.

44. Akaike H: Information theory as the extension of the maxi-
mum likelihood principle.  Akademiai Kiado 1973:267-281.

45. Loehlin JC: Latent Variable Models 4th edition. Mahwah, NJ: Lawrence
Erlbaum Associates; 2004. 

46. Fox J: Structural Equation Modeling With the sem Package in
R.  Structural Equation Modeling 2006, 13:465-486.

47. Cervino AC, Edwards S, Zhu J, Laurie C, Tokiwa G, Lum PY, Wang S,
Castellini LW, Lusis AJ, Carlson S, Sachs AB, Schadt EE: Integrating
QTL and high-density SNP analyses in mice to identify Insig2
as a susceptibility gene for plasma cholesterol levels.  Genom-
ics 2005, 86(5):505-517.

48. Wang S, Yehya N, Schadt EE, Drake TA, Lusis AJ: Genetic and
genomic analysis of fat mass trait with complex inheritance
reveals marked sex specificity.  PLoS Genetics 2006, 2(2):e15.

49. Gong Y, Lee JN, Lee PC, Goldstein JL, Brown MS, Ye J: Sterol-reg-
ulated ubiquitination and degradation of Insig-1 creates a
convergent mechanism for feedback control of cholesterol
synthesis and uptake.  Cell Metabolism 2006, 3:15-24.

50. Mounier C, Posner BI: Transcriptional regulation by insulin:
from the receptor to the gene.  Can J Physiol Pharmacol 2006,
84:713-724.

51. Lusis AJ: A thematic review series: systems biology
approaches to metabolic and cardiovascular disorders.  J Lipid
Res 2006, 47(9):1887-90.

52. Yang X, Schadt E, Wang S, Wang H, Arnold AP, Ingram-Drake L,
Drake TA, Lusis AJ: Tissue-specific expression and regulation
Page 20 of 21
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16515682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16515682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16515682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16920875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16920875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16934000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16934000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16934000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17101986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17101986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17101986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17668265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17668265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17668265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17408501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17408501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17408501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15504238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15504238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15504238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15965475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15965475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16614326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16614326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16719927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16719927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17653589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17653589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17939863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17939863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2090279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11684236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11684236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12689998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12689998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12689998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15237224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15237224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15237224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15887296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15887296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15887296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7581446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7581446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16126366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16126366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16126366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16462940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16462940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16462940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16399501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16399501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16399501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16998535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16998535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16924129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16924129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16825664


BMC Systems Biology 2008, 2:34 http://www.biomedcentral.com/1752-0509/2/34
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

of sexually dimorphic genes in mice.  Genome Research 2006,
16(8):995-1004.

53. Nordstrom E, Ryden M, Backlund E, Dahlman I, Kaaman M, Blomqvist
L, Cannon B, Nedergaard J, Arner P: A human-specific role of cell
death-inducing DFFA (DNA fragmentation factor-alpha)-
like effector A (CIDEA) in adipocyte lipolysis and obesity.
Diabetes 2005, 54:1726-1734.

54. Spirtes P, Glymour C, Scheines R: Causation, Prediction, and Search 2nd
edition. Cambridge, Massachusetts: The MIT Press; 2000. 

55. Gjuvsland A, Hayes B, Meuwissen T, Plahte E, Omholt S: Nonlinear
regulation enhances the phenotypic expression of trans-act-
ing genetic polymorphisms.  BMC Systems Biology 2007, 1:32.

56. Bosl W: Systems biology by the rules: hybrid intelligent sys-
tems for pathway modeling and discovery.  BMC Systems Biology
2007, 1(13):.

57. Grondin Y, Raine D, Norris V: The correlation between archi-
tecture and mRNA abundance in the genetic regulatory net-
work of Escherichia coli.  BMC Systems Biology 2007, 1(30):.

58. Mueller-Linow M, Weckwerth W, Hütt M: Consistency analysis of
metabolic correlation networks.  BMC Syst Biol 2007, 1:44.

59. Kline R: Principles and Practice of Structural Equation Modeling New
York, NY: The Guilford Press; 2005. 

60. Fox J: "Linear Structural-Equation Models".  In Linear Statistical
Models and Related Methods Volume 4. Wiley; 1984. 

61. Steiger J, Fouladi R: What if there were no significance tests? Erlbaum,
Mahwah, NJ; 1997. 
Page 21 of 21
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16825664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15919794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15919794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17651484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17651484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17651484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17408503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17408503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17640329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17640329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17640329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17892579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17892579
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Correlation-based tests of causal models
	Local SEM-based edge orienting scores
	Multi-marker LEO.NB score
	Thresholds for the edge orienting scores

	Overview of network edge orienting with NEO
	Step 1: Integrate traits (gene expression traits and clinical traits) and SNPs
	Step 2: Genetic marker selection and assignment to traits
	Manual SNP selection
	Automatic SNP selection

	Step 3: Compute local edge orienting scores for aggregating the genetic evidence in favor of a causal orientation
	Step 4: For each edge, evaluate the fit of the underlying local SEM models
	Step 5: Robustness analysis with respect to SNP selection parameters
	Step 6: Repeat the analysis for the next A-B trait-trait edge and apply edge score thresholds to orient the network
	NEO output and R software

	Applications
	Research goals that can be addressed with NEO
	Mouse data description
	Application I: Studying the causal relationships between Insig1, Fdft1 and Dhcr7
	Application II: Screening for genes that are reactive to Insig1
	Relationship to prior work
	Application III: Fsp27 is upstream of a biologically interesting gene co- expression module in female BxH mice

	Simulation studies
	Multi-edge simulation model that involves one hundred SNPs
	Single edge simulation model parameterized with the heritability


	Discussion
	Conclusion
	Methods
	Review of Structural Equation Models

	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

