Skip to main content

Table 1 Equations and threshold inequalities used to simulate the TOL network

From: The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene

N°

PL equations for the TOL model

Description

1

dupper/dt = k 0 upper * s + (XylR, θ XylR ) * s + (m xyl , θ mxyl ) - g upper * upper

Upper pathway expression

2

dXylS/dt = k 0 XylS + k 1 XylS * s + (XylR, θ XylR ) * s + (m xyl , θ mxyl ) - g XylS * XylS

XylS expression

3

dmeta/dt = k 0 meta * s + (XylS, θ 2 XylSh ) + k 1 meta * s + (XylS, θ 1 XylSi ) * s + (upper, θ upper ) * s + (m xyl , θ mxyl )

- g meta * meta

Meta pathway expression

4

dXylR/dt = k 0 XylR - g XylR * XylR

XylR expression

 

Parameter inequalities

 
 

zero upper <θ upper < k 0 upper /g upper < max upper

Parameter inequalities for equation 1

 

zero XylS < θ 1 XylSi < k 0 XylS /g XylS < θ 2 XylSh < (k 0 XylS + k 1 XylS )/g XylS < max XylS

Parameter inequalities for equation 2

 

zero meta < θ meta < k 0 meta /g meta < k 1 meta /g meta < (k 0 meta + k 1 meta )/g meta < max meta

Parameter inequalities for equation 3

 

zero XylR <θ XylR < k 0 XylR /g XylR < max XylR

Parameter inequalities for equation 4

 

Alternative parameter inequalities

 
 

zero XylS < θ 1 XylSi < k 0 XylS /g XylS < (k 0 XylS + k 1 XylS )/g XylS < θ 2 XylSh < max XylS

No XylS hyper-expression condition (for eq. 2)

 

zero upper < k 0 upper /g upper <θ upper < max upper

No XylSa condition (for eq.1)